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The influence of LiDAR pulse density on the
precision of inventory metrics in young
unthinned Douglas-fir stands during initial and
subsequent LiDAR acquisitions
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Abstract

Background: LiDAR is an established technology that is increasingly being used to characterise spatial variation in
stand metrics used in forest inventory. As the cost of LiDAR acquisition markedly declines with LiDAR pulse density,
it is useful to identify how far pulse density can be reduced without compromising the precision of relationships
between LiDAR and stand metrics. Using plot measurements and LiDAR data obtained from highly stocked and
unthinned Douglas-fir plantations (Pseudotsuga menziesii [Mirb.] Franco), the objective of this research was to
characterise the precision of regressions between LiDAR metrics and stand metrics (mean top height, Hm, volume,
V and mean diameter, D) under a range of pulse densities using Digital Terrain Models (DTMs) representing two
common scenarios. Under the first scenario, which represents an initial acquisition, the point cloud was sequentially
culled and used for creation of a DTM and corresponding LiDAR cloud metrics. In the second scenario, which
represents a subsequent acquisition, a DTM generated at high pulse density (10 pulses m−2) was used for the
creation of the corresponding LIDAR cloud metrics.

Methods: Models describing the precision of regressions between LiDAR metrics and stand metrics were
developed at 10 pulses m−2. LiDAR data were culled to pulse densities ranging from 10 to 0.01 pulses m−2 and the
impact of culling on the precision of these regressions was examined under the two scenarios.

Results: For the scenario with the culled DTM, precision of the three models remained stable until densities of
2 – 3 pulses m−2 were reached. Below this threshold, there was a gradual decline in precision to pulse densities of
0.7 – 1 pulses m−2 at which point the R2 was 95% of the maximum values. Further culling of the data resulted in a
sharp decline in model precision for all three regressions. For the scenario where the DTM was held at a high pulse
density, little change in the precision of the regressions was found until pulse densities of 0.04 to 0.2 pulses m−2

were reached. There was a sharp decline in precision below pulse densities of 0.04 pulses m−2 for all three models.

Conclusion: This study was undertaken in highly stocked unthinned Douglas-fir stands located in areas with
complex topography. Consequently, the pulse density thresholds described here are likely to be conservative and
could be used to guide acquisition of high-quality LiDAR datasets for this species.
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Background
LiDAR is an established technology used to derive spatial
stand metrics that are increasing the accuracy and effi-
ciency of operational forest inventory. Since the first appli-
cation of LiDAR in forestry almost three decades ago
(Nelson et al. 1984), LiDAR point cloud data have been
used to accurately predict stand height (Watt and Watt
2013; Coops et al. 2007; Means et al. 2000; Næsset 2002;
Means et al. 1999) and volume (Watt and Watt 2013;
Coops et al. 2007; Means et al. 2000; Næsset 2002; Means
et al. 1999). Correlations of moderate to high strength
have been found between LiDAR metrics and basal area
(Næsset 2002, 2004b, 2005; Nord-Larsen and Schumacher
2012; Means et al. 1999; Means et al. 2000), diameter
(Næsset 2002) or green crown height (Næsset and Okland
2002). However, stand density is typically predicted only
with a moderate degree of precision from LiDAR cloud
metrics (Næsset and Bjerknes 2001; Hall et al. 2005;
Næsset 2002).
As LiDAR acquisition over large areas is expensive,

LiDAR missions often require compromises around data
quality. One of the most important variables affecting
the cost of acquisition over a fixed area is the LiDAR
pulse density (Baltsavias 1999; Lovell et al. 2005). Al-
though there are many ways to increase the pulse dens-
ity (e.g. reducing aircraft altitude and speed), ultimately
this variable is related to flight time (Jakubowski et al.
2013) and consequently acquisition cost increases with
pulse density. It is, therefore, of considerable interest to
understand how far pulse density can be reduced with-
out unduly compromising the accuracy of inventory in-
formation obtained from LiDAR data.
The influence of pulse density on the precision of rela-

tionships between stand and LiDAR metrics has been
widely investigated. In stands dominated by Norway spruce
(Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.),
Gobakken and Naesset (2008) found that pulse densities
could be reduced from 1.13 to 0.25 pulses m−2 with little
effect on the quality of inventory results. In a mixed conifer
forest, where pulse densities were reduced from 9 to 0.01
pulses m−2, it was found that correlations between LiDAR
metrics and key stand metrics (tree height, diameter, and
basal area) were relatively unaffected until pulse densities
were reduced below 1 pulse m−2 (Jakubowski et al. 2013).
In mixed conifer-hardwood stands, it was found that pulse
density could be reduced from 3.2 to 0.5 pulses m−2

with little effect on the precision of relationships be-
tween LiDAR and stand metrics (Treitz et al. 2012).
Although research has investigated the extent to which

pulse densities can be reduced, little work has compared
how precision changes without and with a high quality
digital terrain model (DTM). Generally an initial LiDAR
flight is undertaken to obtain accurate representations of
the ground and canopy through the respective creation
of a DTM and canopy height model (CHM). Reducing the
pulse density of the data too much during this initial ac-
quisition is likely to compromise the quality of the DTM
which in turn which will have a deleterious effect on esti-
mates of canopy metrics as these are referenced to the
DTM. However, once an accurate DTM has been ob-
tained, relationships are likely to exhibit greater stability
to lower pulse densities as the position of the ground to
which the above-ground point cloud is referenced does
not change. Although previous research has verified this
effect in stands dominated by Picea abies and Pinus sylves-
tris (Magnusson et al. 2010), the authors are unaware of
any other research that has made this comparison in plan-
tation monocultures.
High productivity and superior wood properties have

made Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco)
one of the premier and most widely planted plantation
species throughout the world. Globally, there are ca. 15
million hectares of Douglas-fir plantations with substantial
areas occurring in Europe, South America, New Zealand,
Australia and western North America (Hermann and
Lavender 1999). Douglas-fir forest plantations are some
of the most productive in the world (McMurtrie 1993).
Despite the importance of Douglas-fir as a plantation

crop, little research has investigated how variation in
LiDAR pulse density affects the predictive precision of
key structural metrics. The percentage of ground returns
within stands of this species is typically lower than that
of other widely planted species, such as Pinus radiata D.
Don (Watt et al. 2013), as Douglas-fir is typically planted
at a high stand density and has a dense canopy. The
percentage of ground returns is lowest immediately prior
to the first thinning when stand density is highest and
light penetration is very low. Paradoxically, acquisition
of accurate LiDAR data during this period is likely to be
very useful for predicting stand structural attributes that
can be used to schedule thinning operations.
The objective of this research was to determine how

reductions in LiDAR pulse density affect the prediction
precision of key structural metrics for this species under
two scenarios using measurements obtained from plan-
tations of unthinned Douglas-fir. The first scenario rep-
resents an initial acquisition. Here, the point cloud was
sequentially culled, the DTM recreated and point cloud
metrics generated. The second scenario represents a
subsequent acquisition. In this case, a DTM generated at
high pulse density (10 pulses m−2) was used for the gen-
eration of the point cloud metrics to ensure that ground
representation was accurate.

Methods
LiDAR data and stand measurements
The data used in this study were obtained from four
Douglas-fir stands covering an area of 8,616 ha in the
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South Island, New Zealand (Figure 1). The LiDAR sur-
vey was flown with a fixed-wing aircraft between May
and August 2012 using a small footprint (~0.20 m)
Optech ALTM 3100EA system with a swath overlap of
50%. The LiDAR and flight parameters used to achieve
first return densities that averaged 15.6 points m−2

(range 5.7 to 28.2 points m−2) are summarised in Table 1.
The system also utilised an Applanix 510 Position and
Orientation System (POS) that employs a GPS and iner-
tial measurement unit (IMU) to compensate for the air-
crafts orientation, and a GPS-based computer to assist
with navigation.

Stand measurements
Measurements of stand dimensions were made from July
to October 2012 from systematically located plots in-
stalled across the trial area. Plots ranged in area from
0.015 to 0.1 ha. High-grade differential GPS units were
used to locate the plots. All four plots containing species
other than Douglas-fir were excluded from the analysis
as were four plots in which the DTM was poorly de-
fined. Plots where low pulse densities had been recorded
were also excluded to ensure that the average pulse
density of the plots was close to 10 pulses m−2, which
was the highest pulse density used in the study. After
Figure 1 Map of the study area showing the distribution of the 113 p
these exclusions there were 113 plots available for the
modelling (Figure 1).
Within each plot, mean diameter (at breast height;

1.4 m), D, was recorded for all trees and heights were re-
corded for at least 10 trees. Stand density and basal area
were determined for each plot and mean top height, Hm

(height of the 100 largest diameter trees per hectare)
was derived from plot mean height, Hmean, and stand
density, S, using the following equation (Knowles 2003),

Hm ¼ 1 =Hmean 1 – 0:106 1 – exp –0:228 S– 100ð Þ = 100ð Þð Þð Þð Þ−1

ð1Þ
Volume, V, was determined from Hm and basal area, B,
using the following equation (Knowles 2003),

V ¼ B 0:928 þ 0:3208Hmð Þ ð2Þ
Across the plot series there was marked variation in

stand metrics and LiDAR metrics obtained at 10 pulses
m−2. Mean top height,V and D ranged four-fold, 26-fold
and three-fold across the plot series respectively, (Table 2).
Ranges in LiDAR metrics were similarly marked, with the
5th, 50th and 95th LiDAR height percentiles ranging 31-
fold, seven-fold, and five-fold, respectively (Table 2). Vari-
ation was also wide for the percentage of ground returns,
lots used in the study.



Table 1 Summary of LiDAR attributes

Variable Value

Wavelength (nm) 1064

Scan angle (deg.) +/− 6.1

Pulse frequency (kHz) 70

Scan frequency (Hz) 70

Footprint diameter (m) 0.19

Ground speed (knots) 116.6

Flying height (m) 750
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PCzero, which averaged 3.82%, ranging from 0.10 −
20.9% (Table 2). Plot slope averaged 17° and ranged
from 2 to 41°.
LiDAR processing
LiDAR data were delivered in two sets of 115 tiled LAS
formatted files. The first set contained bare-ground points
and the second set contained above-ground points. Data
were processed using FUSION software (McGaughey and
Carson, 2003) within custom python scripts. Bare-ground
and above-ground points were combined and then culled
to the different pulse densities using Fusion’s ThinData
utility designed to produce uniform pulse density, at the
specified level, across the coverage area. Digital terrain
models were created for each pulse density using the
culled bare-ground points.
Table 2 Variation in LiDAR and stand metrics

Variable Mean Range

LiDAR metrics

H05 (m) 2.66 (0.152) 0.23 − 7.09

H10 (m) 3.22 (0.159) 0.46 − 7.65

H30 (m) 4.42 (0.173) 0.91 − 9.1

H50 (m) 5.25 (0.183) 1.41 − 9.97

H70 (m) 6.07 (0.194) 1.78 − 10.9

H90 (m) 7.22 (0.210) 2.34 − 12.3

H95 (m) 7.74 (0.218) 2.64 − 13.1

PCzero (%) 3.82 (0.396) 0.10 − 20.9

Stand metrics

Mean top height (m) 9.70 (0.241) 4.31 − 16.0

Volume (m3 ha−1) 97.1 (4.85) 8.88 − 228

Mean diameter (mm) 150 (3.23) 65.5 − 229

Stand density (stems ha−1) 1350 (46.2) 383 − 3118

Stand age (years) 13.8 (0.195) 9 − 17

The percentage of ground returns (PCzero) was determined as the number of
ground returns/(the number of ground returns + all above-ground returns).
Values shown include the mean, with standard error in brackets, and the
range. All LiDAR metrics are shown for data with a pulse density of 10
pulses m−2.
Point clouds were extracted from the culled above-
ground first returns within the extent of each of the 113
field plots. Depending on the scenario, all points within
the point clouds were normalised to height above-ground
using either the culled DTM or the DTM based on 10
pulses m−2. A set of LiDAR metrics was generated for
each of the 113 sample plots using Fusion's CloudMetrics
utility.

Analyses
The influence of pulse density on the quality of predic-
tions for inventory metrics was investigated by determin-
ing the pulse density at which LiDAR derived models of
Hm,V, and D began to substantially lose precision.
The form and statistics for the best models describing

Hm,V and D at the highest pulse density (pulse density =
10 returns m−2) are given in Table 3. The best model for
Hm used a linear form while the models for V and D in-
corporated a quadratic term as this was found to be
significant. The models fitted the data well with little ap-
parent bias (Figure 2). Precision was high for the models
of Hm,V and D as reflected by the high coefficients of de-
termination which were 0.85, 0.83 and 0.73, respectively.
The culling process reduced the pulse density from 10

to 0.01 pulses m−2 using 30 pulse densities spaced in a
logarithmic progression spanning four orders of magni-
tude in pulse density (i.e. 10, 9, 8 ….1, 0.9, 0.8…0.1, 0.09,
0.08…. 0.01). Two approaches were used for the culling
process. In both approaches the pulse density of the
point cloud was culled to the densities described above.
In the first approach the culled point clouds were then
used to create both a new DTM and corresponding
LiDAR metrics. This approach was used to determine the
most appropriate specification for an initial LiDAR flight.
The second approach generated LiDAR metrics at all
pulse densities described above using a DTM that was
generated under the highest pulse density (10 pulses m−2).
This approach was used to determine the lowest pulse
density at which LiDAR data can be obtained if an
accurate DTM is already available. A high pulse density
for the DTM was used to ensure that representation of
the ground was accurate.
Table 3 Statistics and coefficients of models fitted to
mean top height (Hm), volume (V) and mean diameter (D)
for the highest pulse density (10 pulses m−2)

Variables in model Parameter values Model statistics

y x α β λ R2 RMSE

Hm H70 2.749 1.144 − 0.85 1.01 m

V H10 24.41 16.20 1.561 0.83 21.3 m3 ha−1

D H95 11.91 23.88 −0.721 0.73 18.0 mm

Shown are the parameters (α, β and λ) for a model with the form y = α +
βx + λx2. Also shown are the coefficient of determination (R2) and root mean
square error (RMSE) of each model.
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Figure 2 Relationship between LiDAR height percentiles and (a)
mean top height, (b) volume or (c) mean diameter. All
relationships were generated using pulse densities of 10 pulses m−2.
Statistics and coefficients for the models are given in Table 3.
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The three models (Table 3) were refitted at all de-
scribed pulse densities for the two approaches. For each
refit of the model the same independent variables were
retained but coefficients were allowed to change. Statis-
tics describing the precision of the model (coefficient of
determination, R2; root mean square error, RMSE) were
extracted from each model refit and plotted against pulse
density. Examination of these plots was undertaken to de-
termine the threshold at which model precision started to
decline in a systematic manner. Two pulse densities were
identified, one at which 95% of the maximum R2 was
reached and the other with the maximum R2.
Additional analysis was undertaken to determine how

the quality of the underlying height metrics used in the
three models deteriorated with declining pulse density.
Mean plot values for the three independent variables (H70,
H10, H95) at the highest pulse density were regressed
against corresponding metrics determined at all lower
pulse densities, for both scenarios. Assuming that height
metrics for the highest pulse density are correct the RMSE
for each of these regressions was determined. This RMSE
was plotted against pulse density and the values at which
precision of these regressions started to systematically de-
teriorate was identified.

Results
Influence of pulse density on equation precision
In the simulations where the same culling rates were ap-
plied to both the ground and above-ground points, the
maximum R2 was reached between 4 and 10 pulses m−2

(Figure 3; Table 4). Both the R2 and RMSE remained rea-
sonably static at values close to this maximum R2 for all
metrics until pulse densities of between 2 (for Hm and D)
and 3 pulses m−2 (for V) were reached (Figure 3; Table 4).
Below this there was a gradual decline in precision to
pulse densities of ca. 1.0 for Hm and V and 0.7 pulses m−2

for D, at which point the R2 was 95% of maximum
values (Figure 3; Table 4). Further culling of the data re-
sulted in a sharp decline in model precision for all met-
rics (Figure 3).
The precision of the three models remained higher

where the DTM generated at a pulse density of 10 pulses
m−2 was used throughout the culling process. Although
the maximum R2 were found at relatively low pulse dens-
ities (0.3 pulses m−2) for two of the three metrics, little
variation in precision of the culled metrics was noted from
10 pulses m−2 to a threshold of 0.04 pulses m−2 for D and
0.2 pulses m−2 for Hm and V (Figure 3; Table 4). The point
at which the R2 reached 95% of maximum values was
0.06, 0.1 and 0.04 pulses m−2, respectively, for Hm, V and
D (Figure 3; Table 4). A rapid decline in precision was
noted below pulse densities of 0.04 pulses m−2 for all three
stand metrics. Relative changes in RMSE were very similar
to those noted for the R2 for both scenarios (Figure 3).

Influence of pulse density on LiDAR height metrics
Examination of the effect of culling on error of the height
metrics underlying the three regression equations showed
considerable variation between the two types of simula-
tion (Figure 4). For the simulations where the DTM was
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culled, RMSE increased relatively slowly as pulse density
declined until a pulse density of 1 pulse m−2 was reached.
At this point RMSE was ca. 0.5 m for all three height met-
rics (Figure 4). As pulse densities declined below this point,
there was a marked increase in the RMSE (Figure 4). In
simulations with a DTM generated at a high pulse dens-
ity, RMSE declined far more slowly and did not reach
0.5 m until a pulse density of ca. 0.06 pulses m−2 was
reached for all three metrics (Figure 4). There was a
Table 4 Variation in pulse densities required to obtain the m
threshold R2 and 95% of the maximum R2 (95% max. R2) for
breast height (D)

Stand metric Culled DTM

R2 max. R2 threshold. 95% R2

Hm 4 2 0.9

V 10 3 1

D 10 2 0.7

Simulations are shown where the DTM was culled and held at a pulse density of 10
marked increase in RMSE at pulse densities below 0.04
pulses m−2 (Figure 4).
The corresponding RMSE in the height metrics for the

pulse densities at which 95% of the maximum R2 (see
Table 4) was reached was greater for H95 than the other
two height metrics. For simulations where the DTM was
culled and held at 10 pulses m−2, RMSE values were re-
spectively, 0.56 and 0.45 m for H70, 0.47 and 0.42 for
H10, and 0.71 and 0.63 m for H95 (Figure 4).
aximum coefficient of determination (max. R2), the
mean top height (Hm), volume (V) and mean diameter at

DTM at 10 pulses m−2

max. R2 max. R2 threshold. 95% R2 max.

0.3 0.2 0.06

10 0.2 0.1

0.3 0.04 0.04

pulses m−2 throughout the culling process.
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Discussion
The quality of the DTM had a major effect on precision of
the three regression equations. Use of a high-quality DTM
allowed pulse densities to be reduced to between 0.04 −
0.2 pulses m−2 before predictive precision started to de-
cline. These pulse densities were at least an order of
magnitude lower than the thresholds of 2–3 pulses m−2

for the simulations where the DTM was culled. These
results agree with previous research where changes in
predictive precision of tree height and volume with declin-
ing pulse density were quantified for simulations that used
a high quality and culled DTM (Magnusson et al. 2010).
The difference in predictive precision between the two

scenarios was attributed to deteriorating DTM quality.
The quality of a DTM derived from laser data is affected
by several factors including the classification parameters
set by the survey company, interpolation method and grid
size. As these factors were kept constant in the current
study, the quality of the culled DTM was due to a reduc-
tion in the density of ground returns compared to the
DTM generated at a high pulse density. This reduction
in point density leads to increasing classification and
interpolation errors (Anderson et al. 2006). Classifica-
tion errors became more marked as the culling intensity
increased as reflected by the increasing percentage of
classified ground returns observed in the culled DTM
from 3.82 at 10 pulses m−2 to 4.42% at 1 pulse m−2 to
24.3% at 0.01 pulses m−2.
Predictive precision of D remained stable to lower pulse

densities under both scenarios than precision of equations
for Hm and V. This was particularly marked for simula-
tions with the high quality DTM where both the threshold
and 95% of the maximum R2 for predictions of D occurred
at 0.04 pulses m−2. For simulations with the high quality
DTM changes in RMSE for the underlying LiDAR height
metrics with pulse density were very similar among the
three stand dimensions (Figure 4). This disparity in stabil-
ity at low pulse density was therefore attributed to the
higher precision of the base equations for Hm (R2 = 0.85)
and V (R2 = 0.83) that were more sensitive to increasing
error in the underlying height metric than the less precise
equation developed for D (R2 = 0.73). Comparison of the
RMSE for the underlying LiDAR metric at which 95% of
the maximum R2 was reached confirmed this by showing
that RMSE was markedly higher at this point for the pre-
diction of D than either Hm or V (0.63 m vs. 0.45 and
0.42 m). A similar, although less pronounced, effect was
observed for predictions of the three stand dimensions for
the culled DTM.
Currently most LiDAR in New Zealand are acquired

within Pinus radiata planted data forests at a pulse density
of between 1–2 pulses m−2 (New Zealand Aerial Mapping
pers. comm.). Results from this study suggest that pulse
densities of 2–3 pulses m−2 would be suitable for young
unthinned Douglas-fir plantations during initial acquisi-
tion when an accurate DTM is not usually available. For
Douglas-fir stands that have an accurate DTM, pulse
densities could be reduced to ca. 0.2 pulses m−2 without
unduly compromising predictive precision of canopy
metrics. It is likely that pulse densities during a subse-
quent acquisition could be reduced to 0.2 pulses m−2

when an initial acquisition is undertaken at 2–3 pulses
m−2 as equation precision between this pulse density
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and 10 pulses m−2 was very similar for the first scenario.
It should be noted that these minimum pulse densities
correspond to LiDAR acquired with a repetition rate
of 70 kHz, which is 70% of the instrument range of
100 kHz. Reducing the laser repetition rate distributes
the available energy over fewer pulses. This setting was
used in this data acquisition to increase the probability
that pulses had sufficient energy to penetrate the dense
Douglas-fir canopy to the ground.
In an operational setting pulse density and LiDAR

acquisition cost can be reduced through flying faster,
reducing the swath overlap or flying at higher altitude.
Increases in aircraft speed or a reduction in the swath
overlap will reduce the pulse density without influen-
cing other specifications such as footprint diameter and
ability of the laser to penetrate the canopy (Magnusson
et al. 2010).
In contrast, flying at a higher altitude affects several

features of the data. The footprint diameter and swath
width increase while the reflected energy, ability of the
laser to penetrate the canopy, and maximum pulse repeti-
tion frequency decline (Magnusson et al. 2010). As a result
of these changes flying at higher altitude results in a
change in the distribution of echo categories, an upward
shift in the canopy-height distribution and a lower propor-
tion of multiple returns (Goodwin et al. 2006; Næsset
2004a, 2009). Although changes to these latter features do
not significantly affect the precision of regression equa-
tions for common stand dimensions (basal area, volume
or mean tree height) coefficients in the regression equa-
tions are likely to change between acquisitions at different
altitudes (Næsset 2004a, 2009).
The very low percentage of ground returns recorded

in this dataset provided a robust test of how far LiDAR
pulse density could be reduced without affecting model
precision. Compared with previous research, the mean
percentage of ground returns recorded here (3.82%) was
markedly lower that the typical range (11 − 33%) found
for other coniferous species (Næsset 2002; Næsset and
Bjerknes 2001; Næsset 2004a) but was quite similar to
that recorded for highly stocked unthinned hinoki cypress
(Chamaecyparis obtusa Sieb. et Zucc.) and sugi (Crypto-
meria japonica D. Don) plantations where values for the
two species were, respectively, 1.1 and 8.1% (Takahashi
et al. 2006). The low penetration rates in this study are
likely to be attributable to the dense closed canopy of the
plantations and the topographically complex terrain over
which the study sites were located. Culling LiDAR to
lower pulse densities may be possible in more open stands
of Douglas-fir without compromising the precision of
relationships between LiDAR and key structural metrics.
As these results are conservative, use of the information
obtained from this study to guide LiDAR specifications is
likely to result in acquisition of higher quality datasets.
Conclusion
Results show that during an initial acquisition when an
accurate DTM has not been defined LiDAR pulse dens-
ities can be reduced to 2–3 pulses m−2 without markedly
reducing the precision of relationships between LiDAR
metrics and stand dimensions. However, results show
that pulse densities can be reduced to values as low as
0.04 − 0.2 pulses m−2 without substantial precision losses
in these relationships if an accurate DTM is available. As
these results were obtained from highly stocked unthinned
stands they are likely to provide conservative guidelines
for LiDAR acquisition within Douglas-fir stands.
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