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Development of regional models of Pinus radiata
height from GIS spatial data supported with
supplementary satellite imagery
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Abstract

Background: A number of data sources currently exist that can provide information on forest plantations at a
range of scales over an entire rotation cycle. In particular, LiDAR is quickly becoming the technology of choice for
harvest planning and providing local-scale estimates of forest structure. Its application is still limited as repeat
annual acquisition at this scale is generally cost prohibitive. Development of temporally updateable models that can
accurately project important metrics such as tree height between LiDAR acquisitions would be of considerable use
to resource managers. The objective of this research was to develop models of Pinus radiata height using GIS
spatial data supplemented with RapidEye satellite imagery.

Methods: Multiple regression models were constructed to describe maximum canopy height (Hm) derived from
LiDAR at two relatively distant study sites located in Kaingaroa and Tairua forests. A randomised selection of 300 m2

circular plots was made at both sites and average values of Hm within these plots were used for the modelling.
Sources of information used for predicting Hm included stand age and spatial information describing environmental
variables and stand productivity. This information was supplemented with spectra and vegetation ratios derived
from high resolution RapidEye satellite imagery.

Results: The most robust models of Hm that were developed for both sites included a combination of the crop age
obtained from the stand GIS, Site Index (obtained from a GIS surface) and the red-edge vegetation ratio (REVI) The
final models of Hm had respective R2 of 0.99 and 0.94 for the Kaingaroa and Tairua sites. At both sites, stand age
was the strongest predictor of Hm. However, the inclusion of REVI from high resolution imagery did add an
updatable temporal dimension to the model. Changes in REVI are sensitive to the impacts of abiotic and biotic
factors that are not captured by stand age and Site Index.

Conclusion: Applied operationally, this model can be used in a GIS environment to estimate tree height and
identify areas of anomalous growth or disturbance caused by wind, snow, fire or disease.
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Background
Managers of forest resources require detailed information
about their crops for planning, management and inventory
purposes. Traditionally, forest inventories have been carried
out through collection of ground-based measurements
describing relevant crop features such as stand density,
height and volume. However, as these measurements
are usually taken over a limited number of plots, and
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then extrapolated to entire stands, they do not account
for spatial variation across stands. Use of remotely sensed
data within forest inventories overcomes this limitation.
Airborne light detection and ranging (LiDAR) has proved

to be very useful at characterising the forest canopy in three
dimensions. Since the first application of LiDAR in forestry
over a decade ago (Nilsson 1996), the technology has been
widely used to spatially quantify variation in tree height and
crown dimensions at resolutions ranging from the stand
level (Hall et al. 2005; Naesset and Bjerknes 2001), plot
level (Holmgren et al. 2003; Hyyppä et al. 2001; Lim and
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Table 1 Variation in LiDAR maximum height, stand age,
Site Index, mean REVI, and other key climatic and
topographic metrics across the two study sites

Variable Site

Kaingaroa Tairua

LiDAR maximum height (m) 19.9 (0.63-48.9) 25.0 (0.57-45.7)

Age (years) 13.1 (1–32) 16.5 (1–32)

Site Index (m) 29.5 (25.6-32.5) 30.9 (27.1-34.1)

REVI 0.54 (0.10-0.70) 0.39 (0.02-0.54)

Elevation (m) 537 (440–697) 127 (8–335)

Slope (deg.) 2.35 (0.36-19.1) 13.5 (0.42-38.4)

Mean annual rainfall (mm) 1,545 (1,452-1,704) 2,019 (1,836-2,364)

Mean annual temp. (°C) 10.5 (9.7-11.1) 13.8 (12.7-14.4)

The mean is given followed by the range, in brackets.
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Treitz 2004; Popescu et al. 2004) to individual tree level
(Chen et al. 2006; Coops et al. 2004; Holmgren and Persson
2004; Persson et al. 2002; Popescu and Zhao 2008; Roberts
et al. 2005; Yu et al. 2004).
The accuracy of LiDAR-derived estimates is reported

to be similar to or better than manual field measurement
methods for estimating tree height and volume (Naesset
2002; Watt 2005). Data obtained using LiDAR are now
used operationally in Finland, Norway, Sweden, Spain,
Chile, and Australia to provide forest estimates at the
compartment level (Eid et al. 2004). Due to the cost of fly-
ing, application of LiDAR, is usually limited to local scales.
While regional scale data is sometimes utilised (Zhao and
Popescu 2009), repeat annual acquisition at this scale is
generally cost prohibitive (Hudak et al. 2002).
Although not as accurate as LiDAR the use of satellite

remote sensing does provide a far more cost effective
means of predicting crop height. Numerous studies have
shown that multispectral satellite data can be utilised in
models to map important forest attributes over the land
surface (McRoberts and Tomppo 2007; Donoghue and
Watt 2006; Shamsoddini et al. 2013; Ozdemir 2008;
Kayitakire et al. 2006). However, there are limitations to
using remotely sensed data to predict stand dimensions
across the entire rotation. Many studies have shown that
relationships with biomass and leaf area index tend to
saturate after canopy closure when spectra or indices are
utilised as sole predictors of stand dimensions (Donoghue
and Watt 2006; le Maire et al. 2011). Indices are often
favoured as they are likely to be less sensitive to changes
in solar illumination and atmospheric conditions than
individual bands. Although it is generally accepted that
use of remotely sensed data relies on local calibration, little
research has evaluated the robustness of relationships
when they are applied across different locations.
Spatial information held in geographic information

systems (GIS) is also useful for developing models of tree
growth. This approach has considerable merit as forest
managers generally have access to GIS and a number of
potentially useful predictive variables. Rapid increases in
the capability of GIS over recent years have seen the
development of spatial surfaces covering a diverse range
of climatic (Leathwick and Stephens 1998; Leathwick et al.
2003; Tait et al. 2006) and edaphic variables (Watt and
Palmer 2012) that in combination with stand information
such as age, can be used to model tree productivity. These
environmental surfaces have been successfully used to
improve empirical growth models (Dzierzon and Mason
2006) and to develop spatial surfaces describing indices
of plantation productivity, at a given age, such as Site
Index (Palmer, Hock et al. 2009; Watt et al. 2009;
Palmer et al. 2012).
Prediction of forest dimensions using data obtained

from GIS surfaces and satellite imagery has been less
widely researched. Previous research has shown gains
in predictive power when models of important stand
dimensions are created using spectral data and stand age
(le Maire et al. 2011; Gebreslasie et al. 2010; Zheng et al.
2004), relevant indices of productivity (Gebreslasie et al.
2010) and bioclimatic data (Baccini et al. 2008). The present
authors are unaware of any research that has investigated
the relative contributions of satellite imagery and all three
described components of GIS spatial data in prediction of
forest dimensions. The objective of this research was to
develop models of Pinus radiata height using GIS spatial
data supplemented with high resolution satellite imagery.

Methods
Study sites
Airborne LiDAR and high resolution (5 m) satellite
imagery (RapidEye) were acquired over two forests with
contrasting topography (Table 1) located in the North
Island of New Zealand (Figure 1). The first dataset was
obtained from a 4,000 ha strip located on predominantly
flat terrain (Table 1) within Kaingaroa forest in the central
North Island. The second dataset included all of Tairua
forest, a larger (8,900 ha) undulating area (Table 1) located
160 km to the northwest of Kaingaroa forest (Figure 1).
Key LiDAR and RapidEye attributes of both datasets are
summarised in Table 2.

LiDAR dataset
The LiDAR surveys were flown using a fixed-wing aircraft
during April/June (Kaingaroa site) and July (Tairua site)
2012 using a small footprint (~0.20 m) Optech ALTM
3100EA system. The LiDAR and flight parameters used to
achieve pulse densities of 4 and 2.38 returns m-2, respect-
ively, for the Kaingaroa and Tairua sites are summarised in
Table 2. The LiDAR data were processed using customised
routines that were developed using Fusion software
(McGaughey and Carson 2003). Outputs included a Digital
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Figure 1 Map showing the location of the plots within both Kaingaroa and Tairua study areas.

Table 2 LiDAR and RapidEye specifications for the two
study areas

Variable Site

Kaingaroa Tairua

LiDAR specifications

Survey Area (ha) 4000 8900

Survey date April/ June 2012 July 2012

Pulse density (pulses m-2) 4 2.38

Wavelength (nm) 1064 1064

Scan angle (deg.) ± 6 ±6

Pulse frequency (kHz) 70 71

Scan frequency (Hz) 70 53

Footprint diameter (m) ~0.20 ~0.20

Ground speed (knots) 105 105

Flying height (m agl) 950 1650

RapidEye specifications

Image date 27 March 2012 2 May 2012

Resolution (m) 5 5

Spectral bands (No.) 5 5

Sun Angle (deg.) 46 35
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Terrain Model (DTM) and a normalised digital canopy
height model. Both were processed to match the spatial
resolution of the 5 m RapidEye images. Vertical accuracy
surveys based on field data collected in open land-cover
areas reported root mean square error (RMSE) values of
0.05 m and 0.11 m, respectively, for the Tairua and
Kaingaroa sites.
RapidEye imagery
Three Rapideye scenes were acquired over the two study
sites. Images were selected that were close to the date
of the LiDAR survey (see Table 2) with a low level of
cloud cover. The quality of each image geo-correction
was evaluated against both the LiDAR and stand GIS
data and rectifications were made so that the resulting
image registration was accurate to a single-pixel reso-
lution (5 m). The impact of topographic shadowing
was reduced by applying a topographic correction. This
correction adjusts the reflectance of each pixel to a hori-
zontal surface using slope and aspect information
extracted from a DTM and the sun angle recorded for
each scene. The C-correction method defined in Riano
et al. (2003) was applied using a 25 m DTM that was
resampled to match the 5 m RapidEye image using bilinear
interpolation.
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Plot selection
A randomised selection of 300 m2 circular LiDAR plots
were made across both forests from the LiDAR normalised
canopy height model. The forest GIS data were used to
select those plots that fell inside P. radiata stands across
the two study sites. This selection was further refined by
discarding plots that fell in unstocked gaps or inside
stands that were either irregular in shape or less than
five hectares in size. After these exclusions, a total of 247
and 469 plots from the Kaingaroa and Tairua study sites,
respectively, were available for analyses. The distribution
of these plots and the area covered with the LiDAR is
shown in Figure 1.

Data extraction for analyses
Maximum canopy height (Hm) for plots was extracted
and used as the dependant variable in all analyses. Stand
age for each plot was obtained from the stand GIS data.
RapidEye imagery that was spatially coincident with

the plots was extracted. From this imagery, reflectance
bands were extracted and used in analyses. These reflect-
ance bands were used to determine two different vegetation
indices, shown to correlate well with changing densities
of canopy leaf area and canopy structure. These included
the Normalised Difference Vegetation Index (NDVI),
determined as,

NDVI ¼ ρNIR − ρRed
ρNIR þ ρRed

� �
ð1Þ

where the difference in reflectance from the near infrared
(ρNIR) and red (ρRed) bands is divided by the sum of the
two reflectances. The Normalised Difference Red-Edge
Index (REVI) takes advantage of the narrow spectral range
located between the red-edge reflectance (ρRededge) and
near infrared bands and is determined from,

REVI ¼ ρNIR − ρRededge
ρNIR þ ρRededge

 !
ð2Þ

The REVI is more sensitive to changes in chlorophyll
concentrations than NDVI. Values for REVI range
from −1 to +1 with the index differentiating bare soil at
values close to 0 from actively photosynthetic vegetation
where values approach 1.
For this study, the band ratios are of particular interest

as they provide an effective way to correct for variations
in the reflectance that may be caused by differences in
atmospheric or sun illumination conditions. This partially
negates the need to conduct pre-processing steps such as
atmospheric correction.
Environmental data for plot locations were extracted

from biophysical GIS surfaces that included primary and
secondary terrain attributes (Palmer 2008), biophysical
surfaces (Leathwick et al. 2003) and monthly and annual
climate data (Mitchell 1991; Leathwick et al. 2002). Key
environmental variables used in analyses included mean
annual and monthly air temperature, relative humidity,
solar radiation, vapour pressure deficit and rainfall. A
spatial soil water balance model developed for P. radiata
(Palmer, Watt et al. 2009) was used to determine mean
annual and seasonal root-zone water storage (W) for all
plot locations. Fractional available root-zone water storage,
Wf, was determined from these data and the maximum
available root-zone water storage,Wmax, as W/Wmax.
Site Index, which is a standardised measure of height

productivity for a site, is defined for P. radiata as the
mean top height (the average height of the 100 largest
diameter trees per hectare) at age 20 years. Values of Site
Index for the plots were extracted from a New Zealand
surface described in detail in (Palmer, Hock et al. 2009).
This surface was developed from Site Index data
obtained from an extensive set of permanent sample
plots (n = 1,764) established across the environmental
range over which P. radiata forests occur within New
Zealand.

Analyses
All analyses were undertaken using SAS software (SAS-
Institute-Inc. 2000). Two separate models of Hm were
developed for each of the study sites. Approximately
two-thirds of the data was used for model fitting (n = 165
plots for Kaingaroa; n = 312 plots for Tairua) while the
remaining one-third was set aside for model validation
(n = 82 plots for Kaingaroa; n = 157 plots for Tairua).
For both models, a multiple regression approach was

taken to predict Hm from age, Site Index, environmental
data and RapidEye spectra and indices. Variables were
introduced sequentially into each model starting with
the variable that exhibited the strongest correlation until
further additions were not significant or did not substan-
tially improve the model performance. Variable selection
was undertaken manually, one variable at a time. Plots
of residuals were examined prior to variable addition to
ensure that the variable was included in the model using
the least biased functional form.
Accuracy and bias, were assessed on both the fitting

and validation datasets for both models. To assess bias
predicted values for Hm were plotted against actual
values and residual values were plotted against all variables
in the model. Model accuracy was determined through
examining the coefficient of determination (R2) and RMSE.
A further check on the model was made by differencing

the LiDAR height surface (which is used as the benchmark)
from the surface predicted using the final model of Hm for
both study sites. The difference surface was generated at
the native resolution of the RapidEye image. Two surfaces
were created that included the absolute difference
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Figure 2 Relationship between LiDAR maximum height and age.
The relationship is shown for (a) Kaingaroa and (b) Tairua forests.
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between the LiDAR and the predictive surface and this
absolute difference expressed as a percentage of the
LiDAR height. Spatial predictions of Hm excluded recently
harvested stands and stands with species other than P.
radiata.

Results
Data range
Maximum height obtained from the LiDAR ranged
widely within both datasets from ca. 1 m in both study
sites to 49 m at the Kaingaroa site and 46 m at the
Tairua site (Table 1). Age ranged from 1 to 32 years at
both sites. Although mean Site Index was slightly higher
at the Tairua than the Kaingaroa site, the range in Site
Index was relatively similar between sites at ca. 7 m
(Table 1). Mean values for REVI were higher at the
Kaingaroa site than the Tairua site. The mean annual
rainfall at both sites was similar although Tairua was
substantially warmer than the Kaingaroa site. The terrain
at the Tairua site ranged from flat to very steep and was
considerably steeper on average than the relatively flat
terrain at the Kaingaroa site (mean slope of 13.5 vs.
2.35°). The Kaingaroa site was located at a considerably
higher elevation than the Tairua site (Table 1).

Predictive models
Kaingaroa
At the Kaingaroa site, maximum LiDAR height was most
strongly correlated with tree age (Figure 2a). Age accounted
for 98% of the variance in Hm and the RMSE of a model
with only this variable was 1.73 m (Table 3). Combining
age with Site Index reduced the RMSE to 1.46 m while a
model with age and mean REVI had an RMSE of 1.52 m
(Table 3). The final model constructed using Age, Site
Index and mean REVI from the fitting dataset had an R2

value of 0.991 and RMSE of 1.29 m (Table 3). For the final
model, values of Hm showed little bias when plotted
against predictions (Figure 3a) or when residual values
were plotted against any of the variables in the dataset
(data not shown). Models were similarly ranked using the
validation dataset, with the final model having an R2 value
of 0.990 and RMSE of 1.37 m (Table 3). Using the valid-
ation dataset there was little apparent bias when predictions
were plotted against actual values (Figure 3c).
Partial response functions for the final model show

that Hm was most sensitive to changes in age, with values
of Hm increasing 45.3 m across the age range in the
dataset (Figure 4a). There was considerably less sensitivity
between Hm and Site Index with values of Hm increasing
2.8 m across the Site Index range (Figure 4b). The rela-
tionship between Hm and mean REVI was characterised
by an upward opening polynomial with values of Hm

ranging 5.1 m across the mean REVI range and reaching
minimum values at a mean REVI value of 0.44 (Figure 4c).
Tairua
Tree age was the strongest determinant of Hm at the Tairua
site accounting for 93% of the variance in the dataset
(Figure 2b) with RMSE of 3.13 m (Table 4). Inclusion of
either Site Index or mean REVI, with tree age, reduced the
RMSE to 3.02 m and 3.07 m, respectively (Table 4). The
final model with age, Site Index and mean REVI had an
RMSE of 2.96 m and R2 of 0.936 (Table 4). There was
little apparent bias in the final model when predicted
values were plotted against actual values (Figure 3b) or
residual values were plotted against the variables in the
final model (data not shown).
When fitted to the validation dataset, the most precise

model included only the variables of age and Site Index.
The full model, developed using the fitting dataset, had
a similar precision to the earlier model that included
only age as a variable. Using the validation dataset, there
was little apparent bias when predictions were plotted
against actual values (Figure 3d).
Maximum LiDAR height was most sensitive to age

with Hm ranging 41.5 m across the dataset (Figure 4a).
The impact of Site Index on Hm was not as marked with
values of Hm ranging 4.4 m across the Site Index range
(Figure 4b). Similarly, there was little sensitivity to mean
REVI, with a range of 7.0 m occurring across the range
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Table 3 Summary of statistics for the four regression models of maximum LiDAR height developed using data from
Kaingaroa forest

Model no Variables included Fitting dataset Validation dataset

R2 RMSE (m) R2 RMSE (m)

1 Age 0.984 1.73 0.982 1.83

2 Age, Site Index 0.989 1.46 0.986 1.61

3 Age, Mean REVI 0.988 1.52 0.988 1.52

4 Age, Site Index, Mean REVI 0.991 1.29 0.990 1.37

Shown are the coefficient of determination (R2) and root mean square error (RMSE) for the fitting and validation datasets. All variables in the four models were
significant at P<0.001.
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in mean REVI (Figure 4c). The relationship between Hm

and mean REVI was characterised by an upward opening
polynomial with minimum Hm reached at mean REVI of
0.38.
Predictive surfaces
For both forests, surfaces of Hm predicted using the final
models (Figures 5b and 6b) corresponded reasonably well
to Hm derived from the LiDAR (Figures 5a and 6a).
Surfaces showed absolute differences between the two
surfaces to be less than 6 m or 30% in most areas within
both sites (Figure 5c, d and 6c, d). At the Tairua site the
large percentage differences were often associated with
stands with low Hm derived from the LiDAR (areas shaded
red in the bottom left of Figure 6d). In these areas abso-
lute differences between modelled and LiDAR derived
were relatively low (Figure 6c).
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Discussion
This study clearly showed that precise models of tree
height can be developed using stand age and a GIS
surface describing Site Index. Supplemental information
describing REVI, obtained from fine resolution satellite
imagery, significantly improved the models but this
information was of secondary importance to use of GIS
layers. Although of secondary importance, use of REVI
does provide a temporally updateable component to the
height models that could potentially account for the
impact of abiotic and biotic factors on tree height.
At both study sites, age was the strongest determinant of

Hm. Comparison of partial response functions show that
age exceeded the contribution of other variables by at least
nine-fold at Kaingaroa and six-fold at Tairua. The strength
of the age–height relationship was largely attributable to
the relatively narrow range in Site Index at both sites, which
varied by ca. 7 m. Site Index often varies more widely at a
ximum height (m)
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) Kaingaroa and (d) Tairua sites.
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Figure 4 Partial response functions describing the response of
predicted LiDARmaximum height. Response functions are shown for
(a) age, (b) Site Index and (c)mean REVI, for Kaingaroa (dashed line) and Tairua
(solid line) study sites. For each partial response curve, apart from Site Index,
all other variables were held at mean values when the response curve was
generated across the dataset range for each variable. For Site Index, age was
held at 20 years as this is the age at which Site Index is determined.
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forest level, and even more widely at the national level,
with an almost three-fold range (from 15.1 to 42.5 m).
The relationship between LiDAR height and age will be
weaker in forests with greater variability in Site Index.
Inclusion of Site Index in the model allows for more
generalised prediction. Empirical height growth models
typically use Site Index to scale age-height relationships
between sites with differing productivity. Consequently,
from a theoretical point of view empirical selection of
this variable in the model was sound and reinforced the
accuracy of the Site Index layer that was primarily based
on productivity relationships with air temperature and
rainfall (Palmer, Watt et al. 2009). Age and Site Index
should be included within height productivity models
given the critical importance of these two variables. In
situations where Site Index is not available, use of key
environmental variables (such as air temperature and
mean annual rainfall) may provide useful surrogates for
Site Index.
After accounting for age and Site Index, the strongest

correlation was between REVI and Hm. The REVI uses a
narrow spectral band width along the red edge band
that is sensitive to changes in stress and chlorophyll
concentrations of different types of vegetation (Chappelle
et al. 1992; Gitelson et al. 1996; Carter and Knapp 2001).
Previous research using an aerial platform has also identi-
fied the red-edge band as providing useful information on
photosynthetic vigour (Curran et al. 1990).
Gains in precision were greatest when REVI was com-

bined with both age and Site Index. Within the fitting
dataset, relatively substantial gains were obtained over the
age-only model at both Kaingaroa (RMSE = 1.29 vs. 1.73 m)
and to a lesser extent at the Tairua site (RMSE = 2.96 vs.
3.13 m). The validation process confirmed the importance
of REVI at the Kaingaroa site. However gains obtained
through adding REVI and Site Index to the base model
with age did not result in model improvement at the Tairua
site. This is possibly attributable to increased presence of
topographic shadow due to the lower sun angle (35°) and
undulating terrain over the Tairua site. These factors
effectively mitigate the shadow correction process in areas
of high relief. This is evident in site differences in REVI
where REVI was markedly lower over the Tairua site.
The functional form of the models was similar for both

study sites, despite site differences in the magnitude of
REVI. This result provides an indication that the same
factors influence the relationship at each site. Previous
research has shown that REVI is prone to saturation
once the canopy has closed (Donoghue and Watt 2006;
le Maire et al. 2011). This study demonstrates utility of
REVI at ages beyond canopy closure if the variable is
combined with age and other spatially derived layers
that describe environmental processes and interactions.
Inclusion of satellite-based metrics, such as REVI, in

height models allows for fine-scale spatial predictions
that can be temporally updated. For example, within stand
variation in productivity is not accounted for by age as this
is a compartment-level variable. Similarly, while Site Index
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Table 4 Summary of statistics for the four regression models of maximum LiDAR height developed using data from
Tairua Forest

Model no Variables included Fitting dataset Validation dataset

R2 RMSE (m) R2 RMSE (m)

1 Age 0.929 3.13 0.951 2.66

2 Age, Site Index 0.934 3.02 0.953 2.60

3 Age, Mean REVI 0.931 3.07 0.948 2.75

4 Age, Site Index, Mean REVI 0.936 2.96 0.951 2.67

Shown are the coefficient of determination (R2) and root mean square error (RMSE) for the fitting and validation datasets. All variables in the four models were
significant at P <0.001.
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partially accounts for productivity variation within stands
(at a scale of 100 m2) this variable is a static measure that
is not sensitive to inter- annual variation in site conditions.
In contrast, REVI is available at spatial resolutions
that allow for fine-scale predictions of productivity.
As the REVI layer can be continuously updated, predictions
Figure 5 Maps for the Kaingaroa study area. Panels show (a) LiDAR maximu
absolute differences between LiDAR and predicted height, and (d) absolute diffe
from repeat acquisitions are sensitive to changes in forest
structure caused by growth or changes to the forest
canopy caused by wind, snow, fire or disease (Watt and
Watt 2011).
The use of a difference index or ratios such as REVI

are of particular interest as they provide an effective way
m canopy height, (b) predicted canopy height using the full model, (c)
rences expressed as a percentage of the LiDAR height.
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to correct for variations in the reflectance values that may
be caused by differences in atmospheric or sun illumination
conditions. This partially negates the need to conduct
pre-processing steps such as atmospheric corrections.
Findings from the current study show that the functional
form between REVI and height was very similar between
sites although the satellite information used was acquired
at different times. These results reinforce the utility of
REVI as a general predictor of height growth using data
acquired under different atmospheric conditions.
In contrast to the results presented here, previous

research has shown that mean height of P. radiata can be
accurately predicted using only high resolution satellite
imagery data (Shamsoddini et al. 2013). Shamsoddini et al.
(2013) show strong correlations between mean height and
reflectance bands (R2 of 0.82) and band ratios (R2 of 0.78)
from a WorldView-2 multispectral image. The most
precise model of mean height was developed using tex-
tural attributes and had a coefficient of determination
of 0.93 (Shamsoddini et al. 2013). The approach used by
Shamsoddini et al. (2013) is not reliant on up-to-date GIS
records, that include recently harvested areas, as the
relationships used for prediction are more sensitive to
variation between bare ground and forested areas, than
those used here that were primarily reliant on stand age
derived from the GIS. The approach used in the present

http://www.nzjforestryscience.com/content/43/1/11
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study is useful in well managed plantations where managers
have access to spatial surfaces describing variation in site
productivity such as Site Index. Although the approach
outlined here is reliant on up to date stand records a
methodology has been developed using RapidEye imagery
to update recently harvested areas and segregate different
species within the stand GIS (Watt and Watt 2011; Watt
and Watt 2012). This methodology could be used to
update the stand GIS immediately before the models
described in this paper are applied to estimate height.
The use of a single variable such as REVI from satellite
imagery is justified as the simplicity of the relationship
may allow generalisation that is not possible with more
complex models that include a number of independent
variables.
Further research should be undertaken across broader

spatial scales that include greater gradients in Site Index
to further test the generality of the models developed
here. Development of generally applicable regional models
of height would be of considerable use to the forestry
sector as this approach provides a means of more fre-
quently mapping and monitoring of crop performance.
Once this benchmark has been established then subse-
quent acquisition of imagery should be able to identify
clearfell areas not updated in the stand GIS or areas with
abiotic or biotic damage. This information would be useful
to both resource planners and managers. Frequent cover-
age from satellite-based systems will also assist in the fo-
cussing of LiDAR surveys around more heterogeneous
areas (Watt and Watt 2012).

Conclusions
In conclusion, the retrieval of forest structure information
over the lifetime of a planted forest is best achieved by the
integration of information from GIS layers with satellite,
airborne and ground-based measurements. Through such
integration of data into a GIS, foresters have a powerful
tool that is capable of providing a rapid overview of a large
forest estate. These data provide both a pictorial view of
the forest and quantitative analysis that can underpin
better informed forest management decisions.
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