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Abstract

effect on the number of Type 1 or 2 resin pockets.

Background: Mechanical bending stress due to tree sway in strong winds and water stress during drought are
thought to contribute to the formation of resin pockets, but it is unclear if these are linked and whether the
initiation of resin pockets is influenced by the water status of the trees at the time of stem bending.

Methods: The effect of stem bending on the formation of resin pockets was evaluated under various soil moisture
conditions. The stems of 12-year-old radiata pine (Pinus radiata D.Don) trees were bent mechanically in spring or
summer when the soil was water deficient, and in summer after rehydration. After the completion of the growth
season, a selected sample of trees was felled and stem discs were assessed for the presence of resin pockets, using
disc photos and image analysis. All stem bending treatments were compared with control trees.

Results: Stem bending in spring or summer was found to increase the number of Type 1 resin pockets, but had no
effect on the number of Type 2 resin pockets. The soil moisture conditions at the time of stem bending had no

Conclusions: The Type 1 resin pockets occurred in the inner part of the early wood, adjacent to the growth ring
boundary. This suggests the Type 1 resin pockets were initiated in the mature wood, behind the cambium and
zone of differentiation, and were not influenced by the water status of the tree stems at the time of stem bending.
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Background

Resin pockets are a major cause of degrade in the
appearance grade timber of radiata pine (Pinus radiata D.
Don). When present at moderate to severe levels in the
logs of radiata pine, they can lead to significant reductions
in the value of the timber (McConchie & Turner, 2002;
Cown et al.,, 2011). Resin pockets occur as Type 1 and 2
forms in the logs of radiata pine (Sommerville, 1980;
McConchie et al., 2008; Ottenschlaeger et al., 2012). Type
1 resin pockets are described as lens-shaped accumula-
tions of resin and callus tissue within a growth-ring that
cause no damage to the cambium, while Type 2 resin
pockets are similar except the cambium is ruptured and
healing results in an occlusion scar that can occur over
several growth rings. Resin pockets occur at some level in
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all stands of radiata pine in New Zealand (Park, 2004), but
reach epidemic levels in regions that are windy and/or dry.

The formation of resin pockets in trees is thought to
occur as a result of the stress associated with wind expos-
ure. Frey-Wyssling (1938; 1942) suggested that resin
pockets in European larch (Larix decidua Mill.) and
Norway spruce (Picea abies (L.) Karst.) were formed as
checks in the cambium due to wind forces. The swaying
of trees in strong winds was believed to induce sufficient
shear stress in the cambium to cause tearing of the cells in
the tangential direction, which formed into resin pockets.
Wind exposure was proposed by Clifton (1969) as the
cause of the high incidence of resin pockets in radiata pine
grown in Canterbury, New Zealand. The distribution of
resin pockets in the trees suggested a mechanically in-
duced cause - in the vertical direction the resin pockets
were predominant in an area representing the zone of
maximum wind sway, and in the radial direction the
incidence of resin pockets decreased when the trees

© 2013 Jones et al, licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.


mailto:trevor.jones@plantandfood.co.nz
http://creativecommons.org/licenses/by/2.0

Jones et al. New Zealand Journal of Forestry Science 2013, 43:10
http://www.nzjforestryscience.com/content/43/1/10

reached a size where they were able to resist wind sway
(Clifton, 1969). The exposure to wind has been implicated
in the increase in the number of resin pockets observed
after storm events in central Europe. Survivor trees of
European larch and Norway spruce have been shown to
produce resin pockets more intensively in the years fol-
lowing severe storms (Wernsdorfer et al.,, 2002; Zielonka
& Malcher, 2009). The increase in the number of resin
pockets is thought to occur as the result of wind sway in
the remaining stems of the storm thinned stands. Heavy
thinning of managed plantation forests to low final stock-
ings has produced similar increases in the number of resin
pockets in Norway spruce in central Europe (Schumacher
et al,, 1997) and radiata pine in New Zealand (Barker &
Tombleson, 1999; Dean & Barker, 1999). However, Watt
et al. (2011) found no relationship between the incidence
of resin pockets and wind speed at a given site.

The role of stem movement on resin pocket formation
has been evaluated in controlled experiments involving
stem bending, and restraints on wind sway. Temnerud
et al. (1999) found the application of mechanical bend-
ing stress during growth to the stems of 5-year-old Scots
pine (Pinus sylvestris L.) trees increased the formation of
xylem wounds that resembled resin pockets by 30% over
the controls. Watt et al. (2009) found that restraints on
14-year-old radiata pine trees to limit wind sway reduced
the number of resin pockets, compared with unre-
strained control trees on the Canterbury Plains in New
Zealand. The effects were most marked on the incidence
of Type 1 resin pockets. Ottenschlaeger et al. (2012) pro-
posed a common cause triggering the occurrence of Type
1 and Type 2 resin pockets.

Water stress due to drought has been proposed as a
cause of resin pockets of radiata pine in New Zealand
and Norway spruce in Europe. Cown (1973) showed that
resin pockets in radiata pine on the Canterbury Plains in
New Zealand were often associated with false rings,
which are an indirect effect of soil moisture deficit on
xylem formation. More recently, the availability of water
was found to be a factor in the formation of resin
pockets in radiata pine in the central North Island of
New Zealand (Woollons et al., 2009). This analysis was
based on observations of resin pocket occurrence. The
authors found that high vapour pressure deficit in
October (which is a measure of water demand), low soil
water availability, stem top-outs (which are a highly
localised measure of maximum wind gusts), and fast
diameter growth (which is indicative of early heavy thin-
ning) were positively related to the number of resin
pockets. Seifert et al. (2010) found that stress due to lack
of water appeared to play a role in the presence of resin
pockets in Norway spruce, with increased numbers of
resin pockets associated with lower precipitation during
the growth season, wider growth rings, and longer
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crown lengths. Watt et al. (2011) reported the incidence
of resin pockets in radiata pine showed regular peaking
in the latter part of the growth rings on sites where the
water stress would be expected to peak late in the grow-
ing season.

The way in which water stress leads to resin pocket
formation, and how it interacts with stem movement is
not understood. The association of resin pockets with
false rings suggests that soil water deficits lead to zones
of weakness in the growth rings (Cown, 1973), which
predisposes the trees to resin pocket formation during
wind events. However, it could be that changes in cell
turgor pressure in the cambium following the release of
water stress, lead to conditions that predispose the cam-
bium to damage and the formation of resin pockets. The
cells in a severely water-stressed cambium tend to load
their vacuoles with minerals that will help the cell retain
enough water to prevent death (Sudachkova et al., 1994).
Over the surface of the cambium, there will be gradients
of cells with lower or higher osmotic potential. When a
heavy rainfall event occurs, the sudden influx of water
will be drawn into the vacuole of some cells more rap-
idly than others. Those with a very high osmotic poten-
tial will be better competitors, than cells with lower
osmotic potential, and the influx of water and high cell
turgor pressure could make the cambium more suscep-
tible to mechanical damage.

In this study, a field experiment was undertaken to
determine the interactive effects of stem movement and
water stress on resin pocket formation in a 12-year-old
radiata pine stand. The stems of the radiata pine trees
were mechanically bent at two different times during
the 2007/2008 growing season, over a range of naturally
occurring and artificially induced soil moisture condi-
tions. Following the completion of this growth season,
the incidence of resin pockets was assessed and com-
pared with unbent control trees. Type 1 and Type 2
resin pockets were assessed.

Methods

Site selection

A stand of 12 year-old radiata pine trees in Balmoral for-
est, Canterbury, New Zealand (latitude 42° 49’ 56”, longi-
tude 172° 47’ 207, altitude 190 m, slope 0°) was selected
as the trees had high levels of external resin bleeding, a
trait that has been found to be positively related to resin
pocket incidence (McConchie & Turner, 2002). The
long-term annual rainfall at the site is 624 mm year’l,
which is considered low. The soils are Balmoral stony
and shallow silt loams (Soil Bureau, 1968). The low
water storage capacity (47% soil fractional root-zone
water storage, Palmer et al., 2009) of the soil, in combin-
ation with the low rainfall and high evaporative demand
over spring and summer, typically results in severe
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seasonal soil water deficits in summer. The stand was
planted in 1995 at a stocking rate of 868 stems ha*, and
was thinned to waste in 2003 to 600 stems ha ™.

Stem bending treatments

The trees for the stem bending and control treatments
were selected for moderate to severe external resin
bleeding and the absence of dead-tops. The stem bend-
ing treatments were applied during the growing season
in spring, and in summer when the trees were water-
stressed and after the trees had been released from water
stress by the application of water (Table 1). The trees
were allocated to treatment groups to provide a balanced
distribution of diameter at breast height, height, and ex-
ternal resin feature score (McConchie, 2003) for each of
the stem bending treatments and control (Table 2).

The spring stem bending treatment was applied in late
September 2007, after the commencement of new shoot
growth. Soil conditions at the Balmoral forest site were
dry at the time of the spring stem bending treatment
(Table 2), with little rainfall having occurred during the
preceding winter and early spring. The ten trees were
bent using a winch to 30% of the predicted failure load
of the trees (Table 1), to simulate strong winds, while
staying within the elastic limits of the stem. This was
done to prevent structural damage to the stem and roots
that might affect the tree diameter growth during the
subsequent growth season.

The summer water-stressed stem bending treatments
were applied in early February 2008, when the Balmoral
forest site was experiencing extreme soil water deficit
(Table 2). Stem bending commenced on the first day
under these dry soil conditions, with three of the ten
trees winched. Then overnight the site experienced
78 mm of rainfall, and the stem bending of the
remaining seven water-stressed trees was completed
over a period of two days under conditions of partial
rehydration, as it takes 24 to 48 hours for trees to re-
hydrate from soil water deficits (Rook et al., 1976).
The ten trees were bent using a winch to 30 or 40%
of the predicted failure load of the trees (Table 1). The

Table 1 Description of the stem bending and control
treatments

Treatment % of Number
failure of trees
load
Control 10
Stem bending, Spring 30 10
Stem bending, Summer — water stressed 30 5
Stem bending, Summer — water stressed 40 5
Stem bending, Summer - released from water stress 30 5
Stem bending, Summer - released from water stress 40 5
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40% of the failure load was applied to achieve the same
range of tree stem deflection and bending moment that
was obtained with the application of 30% of the failure
load in the spring stem bending treatment.

The summer released-from-water-stress stem bending
treatments were also applied in early February 2008. The
water-stressed trees were rehydrated by applying water
to the trees 48 hours prior to stem bending. Approxi-
mately 300 litres of water was applied to each tree, to a
distance of 1.5 metres from the tree stem (the distance
to the tree canopy drip line), using hoses run out from a
fire truck. The soil wetting agent Breakthru® Gold (SST
Products, New Zealand) was added to the water (2.5
litres to 3600 litres of water) to improve the water pene-
tration into the extremely dry soil. The stem bending of
the summer released-from-water-stress trees was com-
pleted over a period of two days, from 48 to 76 hours
following the application of water. The ten trees were
bent using a winch to 30 or 40% of the predicted failure
load of the trees (Table 1).

Soil moisture content

The water content of the soil was measured at the time
of the spring and summer stem bending treatments.
Four soil samples (2 kg weight minimum) were collected
to a depth of 30 cm at the time of the spring stem bend-
ing, at the start of summer stem bending when the trees
were water-stressed, and 48 hours after the trees had
been released from water stress. The soil available volu-
metric water content was determined gravimetrically by
drying the soil samples at 105°C for 48 hours.

Stem bending method
The stem bending was applied using an electric vehicle
winch (EP9.0, Superwinch, Inc., USA) with the tension
force on the winch rope measured using a load cell
(EMC 1000 kg S type tension load cell) that was gradu-
ated in 1 kg increments. The nominal height of the
winch rope attachment on the tree stem was 75% of tree
height. Each stem was bent four times, twice in the dir-
ection of the prevailing wind (magnetic bearing 158°),
and then twice at 90 degrees to the prevailing wind
(magnetic bearing 68°). On each occasion, stems were
bent to 30 or 40% of the calculated stem failure load,
held for five minutes, then slowly released. The stem
bending was immediately repeated in the same direction.
The tension force on the winch cable was a percentage of
the maximum force, F,,, that could be applied. For each
tree, Finax was calculated using the equation:

CM;,

Frx = 1
h cosf (1)

where F, ., is the maximum tension force, M, is the max-
imum resistive bending moment of the tree, ¢ = 0.3 or 0.4
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Table 2 Tree diameter at breast height, tree height, and tree external resin feature score, for the ten trees of each
treatment in August 2007, and soil water content at the time of the spring and summer stem bending treatments in

September 2007 and February 2008

Treatment Diameter at breast Tree height (m) External resin Soil available volumetric
height (cm) feature score water content (%)

Control 202 (17.0-23.4) 11.9 (9.6-14.3) 22

Spring 20.5 (16.1-23.7) 126 (11.0 -14.7) 20 33

Summer — water stressed 204 (16.7-25.5) 11992 -133) 2.1 20

Summer — released from water stress 20.2 (16.3-24.3) 121 (11.0-13.2) 2.1 75

Average and range in brackets.

corresponding to 30% or 40% of the maximum respectively,
h is the height of the rope attachment, and & is the angle
of the rope from the horizontal in degrees. The maximum
resistive bending moment (M,) was calculated for each tree
using the regression equation from Moore (2000) for
radiata pine trees:

In(Mp) = 1.740 + 2.655 In(DBH ) (2)
where DBH is the tree diameter at breast height.

The actual height of the winch rope attachment on the
tree stem, the magnetic bearing and distance between
the vehicle winch and the tree, and the tension force on
the load cell, were measured and used to calculate the
horizontal force and bending moment acting on the tree
during the stem bending. The bending moment due to
the self-weight of the off-set stem and crown was not
calculated in this study, due to the relatively small de-
flection angles of the tree from vertical.

Stem bending deflections

The deflection of the tree stems during stem bending
was measured using photographs taken at 90 degrees to
the direction of stem bending (Figure 1). The tree stem
profiles were digitised using the Surfer® Surface Mapping
System (Golden Software, Inc., USA) and scaled using
the measured distance between the base of the stem
and the height of the winch rope attachment. The angle
of stem deflection during stem bending was measured
at the height of the winch rope attachment, as the dif-
ference between the stem angle before and during
winching.

Tree harvest

The stem bending and control treatment trees were left
to grow for the remainder of the 2007—-2008 growth sea-
son, to allow for the expression of the resin pockets, and
then felled and sampled for resin pockets in November

Figure 1 Stem profile photographs, before (left) and during stem bending (right), taken at 90 degrees to the direction of stem bending.

N
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2008. The trees selected for felling from the spring and
summer stem bending treatments were chosen to cover
a wide range of stem deflection and bending moment
during the stem bending. Five trees were selected from
the spring stem bending treatment, but for the summer
water-stressed and released-from-water-stress  stem
bending treatments, the trees were pooled for the 30
and 40% of failure loads to obtain an equivalent range of
stem deflection and bending moment. Five trees were
selected from the summer water-stressed treatments,
and included three trees of 30% and two trees of 40% of
failure load. The three summer water-stressed trees
winched before the rain, and two of the trees winched
the following day were felled. Five trees were selected
from the summer released-from-water-stress treatments,
and included two trees of 30% and three trees of 40% of
failure load. The five trees from the control treatment
were selected for a range of tree size and distribution in
the stand.

After felling, the following variables were measured on
all trees sampled: tree height, internode length, branch
whorl depth, and diameter of the largest branch in each
branch whorl. Stem discs were cut at 50 mm intervals
from the butt to 5 metres height, as described in Watt
et al. (2009), and then at 100 mm intervals to 80% of
tree height. The top surface of each disc was cleaned,
and the disc mounted on a back board with calibration
pins and photographed with a digital camera.

Disc image analysis

The resin pockets in the disc photographs were classified
by type, and the dimensions, location and ring position
were measured using an IDL imaging routine developed
at CSIRO. The disc photographs were corrected to a
constant scale, using the back board calibration pins,
and the resin pockets were classified as Type 1 or 2
(McConchie et al, 2008; Ottenschlaeger et al, 2012).
The XY coordinates of the resin pockets were recorded,
the annual rings identified, and the within-ring positions
of the resin pockets were estimated as a percentage of
the ring width.

Disc acoustic velocity measurements

Acoustic velocity (which is a surrogate for wood stiff-
ness) was measured in the breast height air-dried discs
cut from the felled trees. Ultrasonic transducers (500
MHz) mounted on pneumatic rams coupled with digital
callipers and interfacing hardware and software (Emms
& Hosking, 2006) were used to measure the acoustic vel-
ocity at 10 mm intervals from pith-to-bark on eight
equidistant radii for each disc. The area-weighted aver-
age acoustic velocity was calculated for each of the
breast height discs.
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Statistical analyses

The stem bending force, bending moment and deflection,
and the physical properties of the tree stems, were com-
pared for the stem bending and control treatments using
one-way analysis of variance (ANOVA) with the SAS pro-
cedure PROC GLM (SAS Institute, 2000) and the model:

Yjj = u + Treatment; + treej;) + e; (3)

where: Y;; denotes the stem variable measured on tree j in
treatment Z; p is the overall population mean; Treatment;
represents the effect of the stem bending and control
treatments (fixed), tree; the effect of trees within treat-
ments (random), and e;; represents the error term for the
stem measurements.

The SAS Proc GLM (SAS Institute 2000) MEANS
statement and LSD option, which performs pairwise t-
tests, equivalent to Fisher’s least-significant-difference
LSD test in the case of equal cell sizes, was used to pro-
vide multiple comparisons of the stem bending and con-
trol treatment means.

The Type 1 and 2 resin pocket raw data were sum-
marised for the stem bending and control treatments
prior to analysis. Growth rings prior to 2003, and heights
above 6 metres from the ground, were not used in the
analysis. The exclusion of this data is unlikely to affect
the results, as the vast majority of the resin pockets oc-
curred from 2003, and at heights below 6 metres above
the ground. Within each combination of ring and height
class, the presence or absence of resin pockets of each
type, and the number of resin pockets were obtained.
Presence/absence of resin pockets was then analysed
using the PROC GLIMMIX procedure in SAS Version
9.2 with a logistic link function and binary distribution
function. The number of resin pockets was also analysed
with PROC GLIMMIX using a Poisson link function but
this analysis gave similar results to the presence/absence
analysis and is not presented here. The distribution of
resin pocket numbers was extremely skewed with some
trees having large numbers and others having only a few
resin pockets. This meant that a simple measure of pres-
ence/absence within each combination of height class
and ring gave comparable results to complete counts.

The following model was firstly fitted to the presence/
absence data for the ring formed in the 2007-2008 year
(ie., during the treatment period):

E(Yy) = g ' (i + tree; + height; + trt;,) (4)

where, E(.) is the expectation operator, g'(.) is the in-
verse of the logistic link function, Y;; is a binary variable
indicating the presence/absence of resin pockets within
the /™ height class in the i tree, u is the mean, height;
is a fixed effect for the /™ height class, and trt, is a fixed
effect for the 4™ treatment where / is determined by the



Jones et al. New Zealand Journal of Forestry Science 2013, 43:10

http://www.nzjforestryscience.com/content/43/1/10

Page 6 of 14

Vertical distance, m

Vertical distance, m

Horizontal distance, m

Figure 2 Tree stem profiles before and during the first and second winches in the direction of the prevailing wind, and before and
during the third and fourth winches in the direction 90° to the prevailing wind. Lines: Green line Spring, Orange line Summer - water
stressed, Blue line Summer - released from water stress. Note the differences in the horizontal and vertical scales.
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Table 3 Stem bending force and deflection at the rope attachment for the trees in the spring and summer stem

bending treatments

Properties Spring Summer - water Summer - released
stressed from water stress

30% of failure load applied

Horizontal force, kN 0.6 a (0.3-0.8) 0.6 a (04-1.0) 06 a (04-0.9)

Bending moment, kNm 53a7-7.7) 5.5 a (3.3-9.3) 55a (3.0-8.1)

First winch stem deflection, ° 26 a (14-38) 13 b (10-18) 21 ab (11-27)

Second winch stem deflection, ° 26 a (13-38) 13 b (10-19) 23 ab (11-30)

Third winch stem deflection, ° 29 a (11-51) 11 b (9-16) 23 a (14-31)

Fourth winch stem deflection, ° 31 a (12-56) 13 b (9-20) 23 ab (12-32)

40% of failure load applied

Horizontal force, kN 0.8 a (0.5-1.0) 0.7 a (04-1.1)

Bending moment, kNm 6.7 a (3.8-9.6) 6.5 a (3.7-104)

First winch stem deflection, ° 23 a (17-35) 23 a (15-35)

Second winch stem deflection, ° 25 a (16-38) 23 a (17-33)

Third winch stem deflection, ° 24 a (18-41) 25 a (20-35)

Fourth winch stem deflection, ° 25 a (14-45) 27 a (21-37)

Average and range in brackets. Average values for the treatments followed by the same letter do no differ significantly (least significant difference test, a=0.05).
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Figure 3 Tree stem profiles of the first winches in the prevailing wind direction to 30% and 40% of the failure loading (Fmax). Lines:
Gray line 30% of Fmax, Black line 40% of Fmax. Note the differences in the horizontal and vertical scales.

tree number. This model was fitted separately for Type
1 and Type 2 resin pockets.

Secondly, a more complex model adapted from a
standard model used for analysing cross-over trials was
fitted. This model utilised all data, including those from
rings formed in the pre-treatment period (2003—-2007).
It was potentially more sensitive than Model (4) because
it uses the pre-treatment data to improve the precision
of treatment estimates. The model includes subscripts
for group (i) and period (k). The two periods are the
pre-treatment (k=1) and treatment (k=2) periods, while
the groups are the 4 selections, each of 5 trees, which
were assigned different treatments during the treatment
period. The model is as follows:

E(Yijklm) =g (/4 + group; + tree;;) + tree.py;) (5)
+year; + height,, + trth)
where Yjj, is a binary variable indicating presence/ab-

sence of resin pockets within the /™ ring of the m™
height class for the j™ tree of the i™ group. The fixed

effects in the model are the mean, and effects for group
(group;), ring formation year (year;), and height class
(height,,). The fixed effect trt; represents the W™ treat-
ment where / is determined by the group and period
(i and k). The model includes a random effect for each
tree (freej;)) and for the pre-treatment and treatment pe-
riods within each tree (tree.py;). This model was fitted
separately for Type 1 and Type 2 resin pockets. To aid the
interpretation of the treatment effects, in both Models
(4) and (5) the 3 degree of freedom (d.f.) test for treat-
ment was split into a 1 d.f. contrast between the control
and the combined stem bending treatments, and a 2 d.f.
contrast testing for differences between the three stem
bending treatments.

The circumferential direction effects of winching on
the distribution of Type 1 resin pockets, was assessed
using the number of resin pockets formed per winched
tree in 4 equal sized azimuth classes, and two-way
ANOVA with factors for tree and azimuth class. The
models were fitted separately for the pre-treatment
period (2003-2007), and the treatment period (2007-
2008). The azimuth classes were orientated such that the

Table 4 Harvested tree measurements for the stem bending and control treatments in October 2008

Properties Control Stem bending, Stem bending, Stem bending, Summer -
Spring Summer - water stressed released from water stress

% of failure load 30 30-40 30-40

Diameter at breast height, cm 213 (18.9-24.6) 224 (17.9-25.8) 236 (214-253) 226 (184-26.2)

Tree height, m 135 (12.6-15.0) 14.0 (12.8-16.3) 14.2 (13.0-15.1) 13.6 (12.7-14.0)

Mean internode length, cm 29 (23-35) 25 (22-31) 29 (24-34) 30 (27-33)

Mean whorl depth, cm 8 (6-10) 8 (7-10) 9(8-11) 9 (7-10)

Max branch diameter per whorl, mm 21 (16-24) 20 (15-25) 23 (21-27) 22 (18-24)

Max branch diameter, mm 52 (29-73) 57 (33-105) 54 (42-64) 53 (38-88)

Acoustic velocity, km/s 40 (3.6-44) 40 (3.3-4.5) 40 (3.7-4.3) 39 (3.5-4.2)

Average and range in brackets. No significant differences occurred between the treatments (least significant difference test, a=0.05).
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Figure 4 The number of (a) Type 1 resin pockets and (b) Type 2 resin pockets formed per tree in each growth season, for the stem
bending and control treatments. Symbols: Light blue circle with line Control, Green Square with line Spring, Orange triangle with line Summer -
water stressed, Dark blue down triangle with line Summer - released from water stress. Note the different y-axis scales. The error bars are the

Table 5 Analyses of variance for Model (5) showing the significance of the main and interactive effects of treatment,
year (2003-2008) and height (0-6 m) on the incidence of Type 1 and 2 resin pockets

Source of variation Degrees of Type 1 Type 2

freedom F-value P-value F-value P-value
Treatment 3,16 4.87 0.014 1.00 042
Control versus stem bending 1,16 14.15 0.0017 0.55 047
Test among the stem bending treatments 2,16 0.26 0.78 1.20 033
Group 3,16 1.94 0.16 0.67 0.58
Year 4,552 8.88 <0001 1062 <0001
Height class 5,552 18.12 <.0001 23.85 <.0001
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Table 6 Mean presence of Type 1 and Type 2 resin pockets
in each growth ring x 1 m height class combination, in the
lower 6 m of the stem, in the 2007-08 year

Treatment Mean presence Mean presence

of Type 1 resin of Type 2 resin
pockets (%) pockets (%)

Control 10a(3) 26 a (6)

Stem bending, Spring 72 b (21) 21 a (20)

Stem bending, Summer — water 84 b (14) 47 a (30)

stressed

Stem bending, Summer - released 82 b (16) 65 a (26)

from water stress

Estimates are least squares means obtained using Model (5). Standard errors
are given in parentheses. Values within a column followed by the same letter
do not differ significantly (least significant difference test, a=0.05).
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classes were separated along the lines of the directions
of winching.

Results

Stem bending treatments

The tree stem profiles prior to stem bending showed
many of the trees were leaning slightly in the direction
of the prevailing wind, while at 90° to the prevailing
wind there was a more balanced distribution of stem
lean (Figure 2).

The horizontal force and bending moments applied to
the trees during stem bending were similar for the stem
bending treatments, but the stem deflections of the trees
were different for the spring and summer treatments
(Table 3). The spring stem bending treatment showed
larger stem deflections, compared with the summer

(a)

No. of Type 1 resin pockets

No. of Type 2 resin pockets

the different y-axis scales. The error bars are the standard errors.

Height above ground, m

Figure 5 The number of (a) Type 1 resin pockets and (b) Type 2 resin pockets formed per tree in each 1 m height interval, during the
pre-treatment years (2003-2007), for the stem bending and control treatments. Symbols: Light blue circle with line Control, Green Square
with line Spring, Orange triangle with line Summer - water stressed, Dark blue down triangle with line Summer - released from water stress. Note

3 4 5 6
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water-stressed treatment, at the 30% failure loading. The
application of 40% failure loading to the summer stem
bending treatments gave stem deflections that were
similar to the spring stem bending treatment at the 30%
failure loading (Table 3, Figure 3).

Harvested trees

The harvested trees from the stem bending and control
treatments had similar distributions of diameter at
breast height, tree height, internode length, whorl depth,
maximum branch size, and acoustic velocity at breast
height (Table 4). There were no significant differences
between the treatments, which suggests the differences
in the stem deflections of the spring and summer stem
bending treatments were due to factors other than tree
size and branching properties, and the acoustic velocity
of the wood.
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Resin pockets

Inspection of the number of Type 1 resin pockets
formed in the 2007-2008 year suggests that more resin
pockets were formed in the trees subjected to stem
bending than the control trees (Figure 4), especially
when compared with the number of resin pockets that
formed during the pre-treatment period (2003—2007). In
many cases, the number of Type 2 resin pockets observed
was much lower in the 2007-2008 year, compared with
preceding years, making treatment effects difficult to de-
tect (Figure 4).

The number of trees studied was small and a direct
test of the effect of treatment on resin pocket occur-
rence in the 2007-2008 year using Model (4) detected
no significant treatment effect for either Type 1
(F3,16=2.04, p=0.15) or Type 2 (F316=0.87, p=0.48) resin
pockets. However, the contrast between the control

41

No. of Type 1 resin pockets

No. of Type 2 resin pockets

T

0 1 2

bars are the standard errors.

Height above ground, m

Figure 6 The number of (a) Type 1 resin pockets and (b) Type 2 resin pockets formed per tree in each 1 m height interval, during the
treatment year (2007-2008), for the stem bending and control treatments. Symbols: Light blue circle with line Control, Green square with
line Spring, Orange triangle with line Summer - water stressed, Dark blue down triangle with line Summer - released from water stress. The error

T 1

3 4 5 6




Jones et al. New Zealand Journal of Forestry Science 2013, 43:10
http://www.nzjforestryscience.com/content/43/1/10

treatment and the combined stem bending treatments
using Model (4) indicated that the occurrence of resin
pockets was higher among the combined stem bending
trees than the control trees for Type 1 resin pockets
(F116=5.79, p=0.029), but not for Type 2 resin pockets
(F116<0.01, p=0.95). A more sensitive test of treatment
effects was provided by Model (5) which used the pre-
treatment resin pocket occurrence in each tree to im-
prove the precision of estimates obtained during the
treatment period. Model (5) revealed a clearly significant
treatment effect on the occurrence of Type 1 but not
Type 2 resin pockets (Table 5). For Type 1 resin pockets,
the 1 d.f. contrast between the control treatment and the
combined stem bending treatments was highly signifi-
cant, but there was no significant difference between the
three stem bending treatments (Table 5). Estimates
obtained using Model 5 showed the mean occurrence of
Type 1 resin pockets for the control treatment was much
lower than for the stem bending treatments (Table 6).

Significant differences were found in the numbers of
Type 1 and 2 resin pockets with year, or height in the
harvested trees (Table 5). There was an increase in the
number of Type 1 and Type 2 resin pockets with succes-
sive years from 2000-2007 (Figure 4), and an increase
with height to between 1 and 2 metres, and then a strong
decrease with height from 2 to 5 metres, for the pre-
treatment years (Figure 5), and treatment year (Figure 6).
An interaction term for height class x treatment was
added to Model (5) to test whether the effect of stem
bending on Type 1 resin pocket formation varied with
height in the treatment year (2007-2008). However, this
term was not statistically significant indicating that com-
pared with the controls, the increase in the number of
Type 1 resin pockets caused by stem bending did not vary
with height under the logistic transformation. However,
both the stem bending and control treatments showed a
marked reduction in the presence of Type 1 resin pockets
at heights greater than 3 metres (Figure 7).

There were no significant circumferential direction ef-
fects in the number of Type 1 resin pockets found in
stems subjected to bending events, either in the growth
rings formed in the pre-treatment years (2003—2007), or
in the growth ring formed during the treatment year
(2007-2008) (Figure 8). The azimuth classes in the tree
stems on the side of the trees that were subject to com-
pressive stress during winching, and the azimuth class
on the opposite side of the stems, that was subject to
tensile stress, during the stem bending treatments,
showed similar numbers of Type 1 resin pockets.

The location of the Type 1 resin pockets in the growth
rings, were found mainly in the inner early wood, adja-
cent to the growth ring boundary. This applied to the
Type 1 resin pockets formed in the pre-treatment years
(2003-2007) and control trees, and to the Type 1 resin
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Figure 7 The mean presence of Type 1 resin pockets for each
growth ring in 1 m height classes, in the lower 6 m of the
stem, during the stem bending treatment year (2007-2008).
The values plotted are least squares means from a treatment x
height class interaction term added to Model (5). Symbols: Light
blue circle with line Control, Green Square with line Spring, Orange
triangle with line Summer - water stressed, Dark blue down triangle
with line Summer - released from water stress.

pockets formed during the spring and summer stem
bending in the winching year 2007-2008 (Figure 9).

Discussion

The number of Type 1 resin pockets in radiata pine
trees increased with the application of stem bending
treatments in this study. Although project resources did
not permit the destructive sampling of all the trees to
which bending treatments were applied, the numbers
were sufficient to detect significant effects, despite the
considerable variance among trees. The results were
consistent with the formation of xylem wounds with
stem bending in Scots pine trees (Temnerud et al,
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Figure 8 The number of Type 1 resin pockets formed per tree
by stem azimuth class for: Gray rectangle the rings formed
during the pre-treatment years (2003-2007), and White
rectangle the ring formed during the stem bending treatment
year (2007-2008). The error bars are the standard errors.
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Figure 9 The number of Type 1 resin pockets formed per tree at radial positions within the growth rings (a) during the pre-treatment
years (2003-2007) and (b) during the treatment year (2007-2008), for the stem bending and control treatments. Symbols: Light blue
circle with line Control, Green Square with line Spring, Orange triangle with line Summer - water stressed, Dark Blue down triangle with line
Summer - released from water stress. The error bars are the standard errors.
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1999), and with the reduction in the number of Type 1
resin pockets that occurred with restraints on wind sway
in radiata pine trees (Watt et al,, 2009). This suggests
the bending and axial stresses induced in the tree stems
by wind sway, are an important factor in the formation
of Type 1 resin pockets in radiata pine trees.

The greater incidence of Type 1 resin pockets in the
lower part of the stems is consistent with the distribu-
tion of bending and axial stress in the stems. When
stems bend in the wind, the maximum bending and axial
stress occurs at the outer surface, close to the cambium,
in the lower part of the stem (Mergen, 1954; Petty &
Worrell, 1981; Morgan & Cannell, 1994; Chiba, 2000).
The axial stress on the compression side of the bend,
can lead to failure along the lamellate structures of the
growth rings. In Norway spruce, tangential splits were
produced by axial compressive stress, usually in the early
wood along the growth ring boundary (Bariska &

Kucera, 1985). The increase in the number of Type 1
resin pockets with stem bending in the radiata pine
trees, occurred in the early wood of the outer growth-
ring, and close to the growth-ring boundary.

The presence of Type 1 resin pockets in the early
wood of trees subjected to the stem bending treatments
applied here, suggests that Type 1 resin pockets were
forming in the mature wood, behind the cambium and
zone of differentiation, as observed by Donaldson
(1983). The early wood that is close to the growth-ring
boundary appears to have been a zone of weakness for
the formation of Type 1 resin pockets, and will have
contained fully differentiated mature wood at the time of
the spring and summer stem bending treatments. The
structural properties of the mature wood will not be af-
fected by either the water status of the trees, or the timing
of the stem bending during the growth season. This situ-
ation could explain the similar number of Type 1 resin



Jones et al. New Zealand Journal of Forestry Science 2013, 43:10
http://www.nzjforestryscience.com/content/43/1/10

pockets formed when the trees were water-stressed com-
pared with trees that were water stressed then rehydrated.

The absence of increased numbers of Type 2 resin
pockets suggests there was no cambial damage associated
with the stem bending treatments. The influx of water and
the high cell turgor pressure of the cambium cells, follow-
ing the uptake of water by the water-stressed trees, did
not appear to make the cambium cells susceptible to
mechanical damage. Type 2 resin pockets are formed in
response to damage to the cambium, as has been shown
by Donaldson (1983). Either the bending and axial stresses
produced by the stem bending treatments were not large
enough to damage the cambium, or other factors are in-
volved in the formation of Type 2 resin pockets.

The lack of circumferential differences in the number
of Type 1 resin pockets, in any azimuth classes, is pos-
sibly an indication of the internal stresses that occurred
in the tree stems during the swaying motion of the trees
in wind gusts. Tree deflections are irregular in wind
gusts and sways occur in complex looping patterns, as
gusts constantly change in speed and direction (Mayer,
1987; Hassinen et al., 1998; James et al., 2006). As the
swaying motion rotates the stems through the complex
loops, all sides of the tree stems will be placed under in-
ternal stresses (Mergen, 1954). The horizontal displace-
ment of the tree stems during the winching process may
have contributed to internal stresses in other directions.
Such stresses were observed with the vertical displace-
ment of the branches of a Douglas-fir (Pseudotsuga
menziesii Mirb. Franco) tree (Moore et al., 2005), and
could help to explain the similar circumferential distri-
bution of Type 1 resin pockets in the pre-treatment
years and the stem bending year.

Conclusion

The application of stem bending to radiata pine trees in
spring or summer of a single growth season increased
the number of Type 1 resin pockets, but had no effect
on the number of Type 2 resin pockets. The majority of
Type 1 resin pockets were located in the lower part of
the stems, in the early wood of the outer growth ring,
and close to the growth ring boundary. This location
appears to be a zone of weakness that is prone to the
formation of Type 1 resin pockets by compressive stresses
in the stems during the application of stem bending.

The Type 1 resin pockets appeared to form in the fully
differentiated mature wood behind the cambium and
zone of differentiation. The number and location of
Type 1 resin pockets produced was not correlated with
either the timing of stem bending treatment or the water
status of the trees.
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