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Zealand grown Eucalyptus globoidea
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Abstract

Background: Eucalyptus species can be alternative plantation species to Pinus radiata D.Don (radiata pine) for New
Zealand. One promising high value use for eucalypts is laminated veneer lumber (LVL) due to their fast growth and
high stiffness. This study investigated the suitability of Eucalyptus globoidea Blakely for veneer and LVL production.

Methods: Twenty-six logs were recovered from nine 30-year-old E. globoidea trees. Growth-strain was measured using
the CIRAD method for each log before they were peeled into veneers. Veneer recovery, veneer splitting and wood
properties were evaluated and correlated with growth-strain. Laminated veneer lumber (LVL) panels were made from
eucalypt veneers only or mixed with radiata pine veneers to investigate the bonding performance of E. globoidea.

Results: Veneers with no, or limited, defects can be obtained from E. globoidea. Veneer recovery (54.5%) correlated
with growth-strain and was highly variable between logs ranging from 23.6% to 74.5%. Average splitting length in a
veneer sheet was 3.01 m. There was a moderate positive association between splitting length and growth-strain (r = 0.
73), but no significant association with wood stiffness (r = 0.27). Bond quality of LVL panels prepared using E. globoidea
veneer and a phenol formaldehyde adhesive did not satisfy AS/NZ 2098.2.

Conclusion: Usable veneers for structural products could be obtained from E. globoidea at yields of up to 74.5%, but
variation in the existing resource (which has not been genetically improved) was large. In particular, growth-strain
reduced veneer recovery by splitting, largely independent of stiffness. The considerable variation in growth-strain and
stiffness indicated a possibility for genetic improvement. Furthermore, a technical solution to improve bonding of E.
globoidea veneers needs to be developed.
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Background
Eucalyptus species are hardwoods and make up 26% of
the global forest plantation estate (FSC 2012). Plantation
eucalypt species can grow fast, reaching up to 30 cm at
the base in 8 years (de Carvalho et al. 2004), and are
currently mostly grown for chip wood to supply the pulp
& paper industry. However, eucalypt timber is generally
of higher stiffness than that of most softwood species,
the main plantation resource for solid-wood processing.
High stiffness is beneficial for products used in struc-
tural applications, such as in laminated veneer lumber
(LVL) (Bal and Bektaş 2012). Plantation-grown eucalypts

have been investigated previously for use in LVL. In gen-
eral, good veneer qualities (Acevedo et al. 2012), satisfac-
tory mechanical properties (de Carvalho et al. 2004;
Palma and Ballarin 2011) and no major gluing problems
were reported for eucalypt resources with air-dry dens-
ities less than 650 kg/m3 (Hague 2013, Ozarska 1999).
A major obstacle to using eucalypts for veneers and

LVL is the high level of growth-stresses present in the
logs. These growth-stresses are generated by the newly
formed wood cells. The exact molecular mechanism by
which the cell walls generate such large stresses is
unknown (Alméras and Clair 2016; Okuyama et al. 1994;
Toba et al. 2013; Yang et al. 2005). However, the newly
formed cells tend to contract longitudinally and expand* Correspondence: clemens.altaner@canterbury.ac.nz
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transversely during cell wall maturation. As a conse-
quence, the centre of the stem is under axial compres-
sion while the outside is under axial tension (Kubler
1987). These growth-stresses are released when cutting
into the stem i.e. during felling, sawing or veneer peel-
ing. The release of growth-stresses can lead to severe
end-splitting following a crosscut, board distortion
during sawing and breakage of veneers in the peeling
process (Archer 1987; Jacobs 1945; Yang and Waugh
2001). These defects are more prominent in smaller
diameter logs, i.e. a plantation resource. Splitting of
veneers caused by growth-stress lowers veneer quality
and reduces yield. For example, only 20% usable veneers
were recovered from E. grandis W.Hill due to severe
end-splitting (Margadant 1981). To date, no techno-
logical solution to reduce the effects of growth-stresses
has been implemented successfully.
Unlike the global plantation estate, eucalypts and other

hardwood species account for only 2% of the New
Zealand plantation area, which is dominated by Pinus
radiata D.Don (radiata pine) (90%) (MPI 2016). Interest
in establishing commercial eucalypt plantations dates
back to the late nineteenth century with the introduction
and testing of many eucalypt species around that time
(Barr 1996; McWhannell 1960; Miller et al. 1992; Miller
et al. 2000; Shelbourne et al. 2002; Simmonds 1927).
Their work identified various Eucalyptus species that
suit New Zealand conditions. However, today E. nitens
(H.Deane & Maiden) Maiden is the only Eucalyptus spe-
cies that is currently grown commercially on a large
scale. There are more than 10,000 ha E. nitens in South-
land and Otago (in the southern South Island), but the
species suffers from fungal and insect attack in the
warmer North Island (McKenzie et al. 2003; Miller et al.
1992). Some small commercial plantings of E. fastigata
H. Deane & Maiden and a small amount of E. regnans
F.Muell. can also be found (Miller et al. 2000). The
development of these three species is supported by
breeding programmes: E. nitens (Telfer et al. 2015); E.
fastigata (Kennedy et al. 2011); and E. regnans (Suon-
tama et al. 2015). Eucalyptus nitens is currently grown
for chip wood export for the pulp industry. Generally, it
is possible to manufacture quality LVL from 15-year old
E. nitens, which was reported to have an average MoE of
14.3 GPa and achieving F17 grade according to AS/NZS
2269 (2012) (Gaunt et al. 2003). This compares
favourably to the majority of radiata pine LVL prod-
ucts manufactured in New Zealand, the MoE of
which range between 8 and 13 GPa, and which relies
on using the better part of the radiata pine resource.
Apart from growth-stress, E. nitens has been reported
to suffer from collapse and internal checking during
drying (Lausberg et al. 1995; McKenzie et al. 2003;
McKinley et al. 2002).

None of the currently commercially grown eucalypts
produce naturally ground-durable and coloured timber
even though the value of such a resource was identified
many years ago by early eucalypt enthusiasts (McWhan-
nell 1960; Simmonds 1927). Interest in growing these
eucalypt species to produce high-value speciality timbers
continued in the forestry sector but smaller growers
favoured different species so no critical mass has been
achieved to date. Furthermore, a successful plantation in-
dustry needs to be supported by a breeding programme
(Miller et al. 2000). Tree-breeding programmes require a
wide genetic basis and are costly, highlighting the need to
focus resources on a few species.
Three major research initiatives involving durable

eucalypts in New Zealand have been initiated in the last
two decades. The Forest Research Institute (Scion) and
the New Zealand Forestry Association undertook a
series of trials on eucalypts with stringy bark. However,
these were either discontinued due to a lack of funding
or have a narrow genetic base (van Ballekom and Millen
2017). The New Zealand Dryland Forests Initiative
(NZDFI) has been working since 2008 to establish a eu-
calypt forest industry producing naturally durable timber
based on a large scale-breeding programme of three spe-
cies E. bosistoana F.Muell., E. quadrangulata H. Deane
& Maiden and E. globoidea (Millen 2009). This breeding
programme took a range of wood-quality traits into ac-
count (including low growth-stress). While primarily
chosen for the natural durability of their heartwood,
these species also produce wood of high stiffness - up to
20 GPa (Bootle 2005). Demand for engineered timber
products with exceptional stiffness has been generated
by the emergence of high-rise timber buildings (Van
de Kuilen et al. 2011). These species also have naturally
durable heartwood so it may be possible to produce
preservative-free durable LVL (McKenzie 1993; Page and
Singh 2014). Some information on the wood properties
of E. bosistoana, E. quadrangulata and E. globoidea is
available from old-growth resources in Australia (Bootle
2005), but only young plantation-grown E. globoidea has
been studied previously in New Zealand. Eucalyptus glo-
boidea has been reported to be well suited for plantation
forestry with good tree health, growth and adaptability
combined with favourable timber properties of good
stiffness and natural durability (Barr 1996; Haslett 1990;
Millner 2006). Additionally, it is easy to dry and has
relatively low growth-stress levels (Jones et al. 2010;
Poynton 1979). No information on peeling parameters,
veneer drying or bonding has been reported for this
species, however.
Eucalyptus globoidea was selected for the present

study to evaluate its suitability for veneer and LVL pro-
duction considering the fact that sufficiently large trees
could be sourced from a farm-forestry operation. To the
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best of our knowledge, no sufficiently large E. bosistoana
or E. quadrangulata trees are available in New Zealand
for processing research. Growth-strain of logs was
measured and then peeled into veneers. Green veneer
recovery and peeling quality were evaluated and rela-
tionships between these attributes and both growth-
strain and dynamic modulus of elasticity (MoE) were
investigated. Physical properties including density,
shrinkage and moisture content of dried veneer were
also monitored. E. globoidea veneers were used to manu-
facture pure eucalypts LVL and mixed LVL with radiata
pine veneers to investigate the bonding performances.

Methods
Nine E. globoidea trees with straight form were ran-
domly chosen and felled from a 30-year-old stand in the
lower North Island (latitude 40° 11′ 12" S, longitude
175° 20' 35" E, elevation 60 m) in May 2016. The stems
were manually debarked immediately after felling. From
these stems, 26 suitable logs for peeling of 2.7 m length
were recovered. The small end (SED) and large end
diameters (LED) were measured for each log in order to
calculate log volume.

Growth-strain measurement
For each log, the amount of growth-strain was deter-
mined with the CIRAD method (Gerard et al. 1995).
The growth-strain is variable on the surface of a stem
(Gerard et al. 1995). Therefore, growth-strain was mea-
sured on four positions at ~1.35 m spaced by ~900

around the circumference of each 2.7 m log. The four
assessments for each log were averaged. Measuring
points were chosen in straight-grained areas in close
proximity to the above described positions in order to
avoid knots. It was calculated from the measured change
in distance between the pins according to Eq. (1).
α = −φ δ (1).

where α is the strain in microstrain; δ is the measured
displacement in μm and φ is a constant dependent on
tree species. The published value for eucalypt of φ = 11.6
was used (Fournier et al. 1994).

Rotary peeling and veneer evaluation
The trees were transported to Nelson Pine Industries
Ltd. (NPI), Richmond, NZ for processing. All logs were
heated at 85 °C for 24 h in a water bath before peeling
8 days after felling. 23 of the 26 logs were peeled to a

core diameter of 82 mm using a spindled lathe (Raute,
Finland) with three-stage chucks. The remaining three
logs fell off the lathe with a larger peeler core (133 to
162 mm in diameter) due to severe end-splitting. Veneers
with a thickness of 3.74 mm were produced from all 26
logs. During the peeling process, the recovery and vol-
umes of different types of waste (core, round-up, spur,
clipper defects) were recorded for each log. After clipping,
296 veneer sheets were obtained. Recovery was defined as
the ratio of the obtained veneer volume to log volume.
Veneer volume was calculated based on the number of
sheets and the thickness and dimensions of sheets. For
comparison, NPI provided the average recovery data of
more than 46,000 radiata pine logs (2.7 m long) collected
previously from the production line. The radiata pine logs
used in this study were sourced from plantations and
woodlots in Nelson and Marlborough. Veneer splitting
was the major defect with few knots or other defects
found so the aggregate defect rule according to AS/NZS
2269.0 (2012) was not applied. The green veneer sheets
were visually graded to four classes (face, core, composer,
waste) according to their splitting severity by the technical
manager in NPI. Only face and core grades were consid-
ered to be usable veneer.
From the dryer line with the Metriguard 2655 DFX

instrument (USA), ultrasonic propagation velocity and
width data were made available for each veneer sheet.
The individual veneer sheets could be tracked back to
the individual logs. With the clipping width known, the
width data were used to calculate the tangential shrink-
age. The number of splits in each veneer was counted
from the Novascan grader (Grenzebach, Germany)
images. ImageJ software (National Institute of Health,
USA) was used to analyse the splitting lengths.
After drying, a strip approximately 200-300 mm wide

was taken from a sheet near the start and the end of
each veneer mat. The dimension and weight of this strip
were measured to obtain dried density. These test pieces
were then dried further in an oven at 103 °C until
constant weight to obtain the moisture content.
The dynamic modulus of elasticity (MoE) was calcu-

lated from ultrasound acoustic propagation velocity and
wood density data according to Eq. (2).
E= V2ρ (2).
Where V is the ultrasonic velocity, E is the dynamic

MoE and ρ is the density. Static MoE for the population
of sheets was estimated by multiplying the dynamic

Table 1 Green veneer recovery and amount of waste of E. globoidea compared to P. radiata data

Green veneer
recovery (%)

Amount of waste

Round-up (%) Spur (%) Core (%) Clipper defects (%)

E. globoidea 54.5 4.6 2.5 12.0 20.0

P. radiata 69.8 11.2 2.7 6.0 8.3
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MoE with a factor of 0.868. The factor was empirically
determined by laminating test panels of Eucalyptus globo-
diea veneers with known dynamic MoE and conducting
static 4-point bending tests in the edgewise direction.

Bonding quality of eucalyptus veneer
Ten laboratory-scale 10-ply LVL panels were manufac-
tured. Six panels were made of eucalypt veneer only,
choosing veneer sheets of defined MoE grades based on
their dynamic MoE values. One panel each was made
from 12, 14, or 17.5 GPa sheets and three panels were
made from 16 GPa sheets. Each LVL panel contained ven-
eer from one or two logs only. Another four panels were
made of five radiata pine and five eucalypt veneer plies. A
range of eucalypt grades were used in these panels. The
first (14 GPa), third (17 GPa), sixth (14 GPa), eighth
(12 GPa) and tenth layers (12 GPa) were eucalypt veneers
and the rest were radiata pine. Two panels were made
from each of G2 and G4 radiata-pine grades. A typical

phenolic formaldehyde adhesive manufactured by Aica
NZ Limited was used at a rate of 180 g/m2. Panels were
hot-pressed at 160 °C with a pressure of 1.2 MPa.
The quality of the glueline was assessed according to AS/

NZS 2098.2 (2012), which measures the percentage of area
covered by wood after two veneers have been split apart.
According to AS/NZS 2269.0 (2012), bonding between the
plies in LVL shall be a Type A bond. This specification re-
quires a phenolic adhesive complying with AS/NZS
2754.1 (2016) and also a bond quality of any single glueline
not less than 2 and an average of all gluelines not less than
5 when tested according to AS/NZS 2098.2 (2012). Both a
steam and a vacuum pressure method were used to assess
glueline quality (AS/NZS 2098.2 2012).

Results and discussion
Rotary peeling and veneer recovery
For the 26 logs of 2.7 m tested, the small end diameter
averaged 34.4 cm with a standard deviation of 4.3 cm
while the large end diameter averaged 38.9 cm with a
standard deviation of 6.3 cm. The average diameter of
the E. globoidea logs (36.3 cm) was comparable to the
radiata pine logs (34.9 cm) used in the plant for LVL pro-
duction. In a preliminary test, an additional E. globoidea
log was peeled cold. This was unsuccessful and, therefore,
preheating to soften the wood was deemed necessary.
The average veneer recovery for the 26 E. globoidea

logs (54.5%) was lower than for radiata pine logs (69.8%)

Table 2 Summary of veneer recovery and splitting

Recovery (%) Useable veneer (%) Growth-strain (με) Splitting length (m) Split counts

Mean 54.5 33.4 839.4 3.01 8.63

SD 14.2 23.7 181.7 2.57 5.11

Min 23.6 0.0 553.9 0.15 1.14

Max 74.5 74.5 1136.8 8.66 16.86

SD, Min and Max represent standard deviation, the minimum and maximum values respectively

Fig. 1 Face grade veneer with no splitting (top) and composer
grade veneer with severe splitting (bottom)

Fig. 2 Dependence of usable veneer conversions on growth-strain
of the individual E. globoidea logs
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but the best E. globoidea log had a recovery of 74.5%
(Tables 1 and 2). This result was mainly due to a 6%
higher loss in the peeler core caused by severe splits in
the supplied E. globoidea logs and an 11.7% greater clip-
per loss caused by end-splitting of the veneers compared
with the radiata pine logs. However, the amount of
round-up waste was lower for the eucalypt logs than the
radiata pine logs, which indicated a better log form for
E. globoidea. Veneer recovery from individual logs was
highly variable ranging from 23.6% to 74.5% (Table 2). A
previous peeling study with E. nitens reported an overall
recovery of 59% (McKenzie et al. 2003). However, part-
sheets were included in that study while only full sheets
were calculated in the present study.
A spindled lathe was used to peel the logs in the

current study but spindleless lathes are extensively used
in China. They are suitable for rotary peeling smaller
diameter logs from young and fast-grown hardwood
plantations (McGavin 2016). Spindleless lathes achieve
higher yields because they can peel logs to smaller peeler
core diameters compared to spindled lathes currently
used for radiata pine. Moreover, spindleless lathes can
control splits by pressing the splits together during peel-
ing. Therefore, using this type of lathe may generate
higher recovery and quality of veneer sheets.

Growth-strain and veneer splitting
High quality veneers can be obtained from E. globoidea
although splitting significantly degraded the visual
appearance of many veneers (55% of the veneers had
splitting lengths longer than 2 m). Veneers with no and
severe splitting are shown in Fig. 1.
The average recovery of useable veneer (face and core

grades) from E. globoidea was 33.4%. Severe splitting
caused by growth-stress contributed to the low recovery.
The average growth-strain was 839.4 με measured by the
CIRAD method. The log with the lowest growth-strain
had approximately half the growth-strain compared with
that with the highest. Usable veneer recovery was nega-
tively associated with growth-strain (Fig. 2). The average
useable veneer recovery for the logs in the bottom quar-
tile (growth-strain >965.7 με) was 5.8%, while that for
the top quartile (growth-strain <701.8 με) was 57.2%.
The mean splitting length per veneer for individual

logs ranged from 0.15 m to 8.66 m. For a veneer 2.65 m
in length and 1.26 m in width, the average total splitting
length was 3.01 m. This suggested splitting was limiting
veneer quality.
The splitting length was measured after the veneers

were dried. Drying was likely to exaggerate the splitting
lengths but was assumed to affect all veneers equally in
this study. In addition, rough handling and peeling set-
tings can also contribute to the splitting of veneers. It
was assumed that all veneers were equally affected in
these ways and the differences among them were mainly
caused by growth-stress.
A positive correlation (r = 0.73) was observed between

splitting lengths in veneers and growth-strain of corre-
sponding logs (Fig. 3). In this study, average splitting
length was low when growth-strain was less than ~800
με (CIRAD). Longitudinal growth-strain was reported to
be positively related to end-splitting of E. nitens and E.
globulus logs (Valencia et al. 2011; Yang and Pongracic
2004). The number of splits in a veneer sheet is another
measure to evaluate veneer spitting. A strong linear relation-
ship (r = 0.91) was obtained between splitting length and
split numbers (Fig. 3). Considering that the measurement of

Fig. 3 Association between splitting length and growth-strain (left) as well as number of splits (right)

Fig. 4 Splitting length for veneers obtained from the centre to the
outside of five individual logs
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the number of splits is less time consuming than quantifying
splitting length, it might be a better option for future studies.
This result indicated that higher veneer recovery and

quality would be possible if growth-stresses were
reduced. Methods to control the growth-stress and min-
imise splitting are difficult to perform, have not been
successful in industrial applications and incur ongoing
costs (Archer 1987; Malan 1995; Yang and Waugh
2001). Growth-stresses are heritable and selecting trees
with low growth-stress in a breeding programme can
potentially solve this problem for a future resource such
as E. globoidea (Davies et al. 2017; Malan 1995). For
existing eucalypt plantations grown for the lower-value
wood chips, such as E. nitens, segregation would be an
option. However, current methods of measuring growth-
stress are time consuming and cumbersome, making this
approach impractical (Yang and Waugh 2001). Rapid
and non-destructive segregation methods need to be
developed. For example, Yang et al. (2006) measured
growth-strain of 10-year-old E. globulus and found cor-
relations with cellulose crystallite width measured using
a SilviScan-2 instrument.
The relationship between splitting length and radial

position for five logs is shown in Fig. 4. The splitting
length of the veneer sheets tended to increase towards
the centre of the stem (position 0). The decreasing
circumference with decreasing radius results in shorter
tangential distances between the radial end-splits of the

logs. Furthermore, the increasing curvature with de-
creasing radius can facilitate splitting. However, the vari-
ation between the stems was much bigger than the
radial effect, with the veneer splitting independent of
radius for the worst and the best logs.
It is worth noting that the log preheating and peeling

settings in this study were optimised for radiata pine.
Acevedo et al. (2012) reported that better quality veneers
were obtained from E. nitens by adjusting nose bar pres-
sure and peeling knife angle.

Physical and mechanical properties of veneer
After drying, the average dry density was 668 kg/m3 and the
average moisture content was 7.3% (Table 3). No excessively
high or low moisture contents were found, which indicated
homogeneous drying of the E. globoidea veneers.
The average shrinkage of the E. globoidea veneers was

9.9% tangentially and varied between 8.5 and 11.3%.
Most veneers were heartwood as the sapwood in E.
globoidea is very narrow. For comparison, typical
tangential shrinkage values for radiata pine veneers are
6.4% for sapwood and 4.4% for heartwood. Higher
shrinkage will result in greater volume loss. It should be
noted that, within species, heartwood typically displays
lower shrinkage than sapwood.
The average dynamic MoE calculated for the E. globoi-

dea veneer sheets from Metriguard acoustic velocity and
interpolated lab density was 14.67 GPa ranging from
9.59 to 20.26 GPa (Fig. 5). The equivalent static MoE
was estimated to be 12.73 GPa based on the empirical
conversion equation. Common LVL products manufac-
tured from radiata pine range from 8 to 11 GPa. Jones et
al. (2010) investigated 25-year-old E. globoidea for high-
quality solid wood production. Boards from the butt logs
were reported to have an average density of 655 kg/m3,
dynamic MoE of 13 GPa and static MoE of 12 GPa. Ac-
cording to Haslett (1990), the timber of E. globoidea
(over 25 years old) in New Zealand has an MoE of
14.6 GPa at a moisture content of 12%.
High stiffness wood tended to have higher growth-

strain (Fig. 6). This is an unfavourable association as stiff
wood with low growth-strain is desirable. However, the
association between MoE and growth-strain was moder-
ate (r = 0.65) implying the existence of stiff logs which
are low in growth-strain. Several logs produced veneers
with MoEs above 15 GPa and growth-strain levels below

Table 3 Physical and mechanical properties of dried E. globoidea veneers

Dried density (kg/m3) Moisture content (%) Shrinkage (%) Velocity (km/s) Dynamic MoE (GPa)

Mean 688.13 7.31 9.85 4.657 15.14

SD 68.55 1.09 0.77 0.240 2.05

Min 557.41 5.51 8.46 4.322 11.04

Max 824.00 9.32 11.31 5.097 19.51

Fig. 5 Cumulative distribution of dynamic and static MoE of
veneer sheets
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800 με. More importantly no association (r = 0.27) was
found between veneer splitting and stiffness, which
demonstrated that peeling quality needs to be improved
through reducing growth-stress rather than through
MoE. The stiffest logs yielded veneers with an MoE of
up to 19.5 GPa, but these did not necessarily have a severe
splitting problem. Therefore, it seems possible to obtain a
stiff eucalypt resource that yields high-quality veneers.
A weak positive association (R2 = 0.26) between CIRAD

longitudinal displacement and MoE has been found previ-
ously in E. globulus (Yang et al. 2006). With the increase
of longitudinal displacement, microfibril angle tended to
decline while density increased. Similar associations be-
tween growth-strain and wood properties have been re-
ported for wood from Populus deltoides Bartr (Fang et al.
2008). However, no statistically significant associations
were found between growth-stain and dynamic MoE or
density for E. nitens (Chauhan and Walker 2004).
The average distribution of MoEs for the veneers

obtained from the nine trees assessed is shown in Fig. 7.
As for veneer splitting, the variance in MoE among trees

was large with the average stiffness ranging from
12.1 GPa to 18.0 GPa. Analysis of variance found signifi-
cant differences (P < 0.001) in MoE values of veneers
from different trees.
It has to be noted that the tested E. globoidea was

genetically unimproved material of unknown proven-
ance. Wood properties like growth-stress and MoE are
under genetic control (Davies et al. 2017). Murphy et al.
(2005) reported a heritability of 0.3 to 0.5 for growth-
strain in Eucalyptus dunnii Maiden and indicated tree
breeding can be an effective method to reduce growth-
stress. Considerable variation among trees was observed,
indicating a potential for genetic improvement. The rela-
tively high acoustic velocity of eucalypts in the corewood
could allow peeling veneers to a smaller peeler core with
spindleless lathes, improving yields and allowing the use
of a small diameter younger resource.

Bonding quality
The bond test revealed poor bonding of the plies. None
of the panels made with E. globoidea alone passed the
specifications for structural LVL (Table 4). Density
seemed to exaggerate the bonding difficulty for the 100%
E. globoidea LVL. Eucalyptus globoidea panels with
densities higher than 800 kg/m3 had average bonding
qualities lower than 3. Alternating E. globoidea and P.
radiata veneers improved bond quality, and all samples

Fig. 6 Association between MoE and growth-strain (left) as well as veneer splitting (right)

Fig. 7 Box-and-whisker plots of veneer MoE from nine trees. Dotted
lines show minimum and maximum values; the thick black line
shows the median; the box represents the upper and lower
quartiles and outliers are marked using open circles

Table 4 Bond tests of six LVL panels made from E. globoidea
veneers (listed in order of increasing density)

Grade
(GPa)

Density
(g/cm3)

Steam test Immersion test

EEmin EEmax EEmean EEmin EEmax EEmean

12 640.51 1 9 5 1 5 2

16 696.92 3 8 6 4 9 6

16 702.52 1 9 6 3 8 7

16 806.83 0 5 1 0 3 2

14 809.22 0 3 2 2 3 2

17.5 860.05 1 4 2 0 7 3

EE represents bond quality values between E. globoidea veneers (0 no bond –
10 excellent bond). The minimum, maximum and mean values are shown
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passed the steam test, but only one sample passed the
immersion test. The glueline between radiata pine plies
was excellent (Table 5).
Eucalypts have a higher density and extractive content

than radiata pine, and both these factors can make glu-
ing difficult. In Australia, difficulty in bonding veneers
from dense eucalypts (air-dry density above 700 kg/cm3)
are known and some special adhesive formulations have
been developed for these species (Carrick and Mathieu
2005; Ozarska 1999). It is commonly stated that low and
medium density (below 650 kg/cm3) eucalypts glue well
but young E. nitens was found to have bonding issues
however (de Carvalho et al. 2004, Farrell et al. 2011,
Hague 2013). Plywood products made from various
Eucalyptus species have been reported in China,
Malaysia, Uruguay and Brazil indicating that satisfactory
bonding can be achieved for many Eucalyptus species
(de Carvalho et al. 2004; Hague 2013; Turnbull 2007; Yu
et al. 2006). Therefore, it seems probable that a technical
solution for gluing E. globoidea can be found.

Conclusions

1) Veneer recovery ranged from 23.6% to 74.5% among
26 E. globoidea logs. Larger peeler core and higher
clipper losses occurred compared to radiata pine.

2) High-quality veneers could be obtained from E.
globoidea. Low growth-strain logs produced more
usable veneers. Splitting degraded veneer quality.

3) Splitting length in veneers was correlated to growth-
strain of the corresponding logs. Split number was
strongly associated with splitting length and can be
used to evaluate veneer splitting severity. Veneers
from inner wood tended to a have longer splitting
lengths; however differences among logs were more
pronounced.

4) Moisture contents of dried veneers indicated good
drying of E. globoidea. The average tangential
shrinkage was 9.9% and the volume loss was higher
than for radiata pine. Larger shrinkage is a common
feature of high-density timbers.

5) The average dynamic MoE was 14.67 GPa ranging
from 9.59 to 20.26 GPa. No association was found

between splitting length and stiffness. It should be
possible to find stiff logs, however, which would
yield satisfactory veneers. The considerable variation
in stiffness observed here indicated a potential for
genetic improvement.

6) The lack of association between stiffness and
splitting length suggested that quick acoustic
measurements for segregating eucalypt logs suitable
peeling are unlikely to be successful.

7) Bond performance of E. globoidea LVL was poor and
did not meet the New Zealand standard. Alternating
E. globoidea and P. radiata veneers improved bond
quality, but bonding of E. globoidea veneers still
needs to be addressed.
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