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Simulation studies to examine bias and
precision of some estimators that use
auxiliary information in design-based
sampling in forest inventory
P. W. West

Abstract

Background: Various double sampling methods using both target and auxiliary variables have been developed
over many years for use in natural resource inventory.

Methods: Simulations of inventory were carried out using four different ratio estimators and model-assisted estimation
in each of five rather different example forest populations. Estimates of population means and their standard errors
from each of these methods were compared with those obtained using simple random sampling.

Results: With all five double sampling estimators, bias in estimates of means and standard errors (the latter estimated
analytically or through bootstrapping) was generally small and consistent with theoretical expectations. Their efficiency
increased as either the first- or second-phase sample sizes increased. All were more efficient than estimates obtained
using simple random sampling as long as there was some positive level of correlation between the target and auxiliary
variable. However, none of the double sampling estimators was more efficient than any of the others.

Conclusions: For many forest inventory tasks, users may well be able to use whichever of the estimators is most
convenient to their purpose. However, model-assisted estimation has application in a wider range of circumstances
than the other methods, which perhaps recommends it for general use.

Keywords: Inventory, Design-based sampling, Ratio estimators, Model-assisted estimation

Background
Modern forest inventory aims to inform both long- and
short-term objectives of forest management, objectives
that can be as varied as estimation of carbon sequestra-
tion, determination of sustainable wood supply, mainten-
ance of biodiversity or estimation of the level of forest
destruction or rehabilitation (Corona et al. 2003; Wulder
et al. 2004; Köhl et al. 2006; McRoberts and Tomppo
2007; Falkowski et al. 2009). Broadly speaking, forest in-
ventory either maps how some forest characteristic (the
target variable) varies across a forested area or estimates
the total or mean value of that variable across the area. To
assess the level of confidence that one may have in the re-
sult, it is usual also to estimate the level of precision of

such estimates (Paré et al. 2016), commonly expressed as
a confidence limit. Numerous texts describe forest inven-
tory methods (Schreuder et al. 1993; Kangas and Maltamo
2006; Köhl et al. 2006; Gregoire and Valentine 2008;
Mandallaz 2008) and several reviews have summarised re-
cent developments in the discipline (McRoberts et al.
2010; Mandallaz 2013; Corona 2016; Ståhl et al. 2016).
Forest target variables can be difficult, time consuming

and expensive to measure on the ground. Typical exam-
ples include forest biomass or volume of wood products
available for harvest. However, it is common to have
available one or more auxiliary variables that are corre-
lated, at least to some extent, with the target variable
and can be measured relatively easily. Stand basal area
might be such a variable for the two examples men-
tioned above. Such variables can be used very effectivelyCorrespondence: pwest@nor.com.au
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to reduce the time and effort involved in undertaking a
forest inventory.
Recently, much research effort has revolved around

the use of newly available airborne or satellite remote
sensing technologies that provide values of one or more
auxiliary variables (Köhl et al. 2006; Falkowski et al.
2009); in particular, laser imagery has received much
attention for forest inventory. These technologies can
provide imagery at scales as small as metres or tens of
metres across large parts of entire forest regions or,
indeed, entire countries. Using ground-based measure-
ments of the target variable and one or more auxiliary
variables obtained from remote imagery of the measure-
ment sites, research then develops a working model sys-
tem to predict the target variable from the auxiliary
variable(s). Using the remote imagery from across the
entire region, that model is then applied to estimate and
map the target variable across the region and/or provide
estimates of the total and mean of the target variable
over the region. These processes are often termed ‘wall-
to-wall’ inventory and are used to obtain broad-scale,
strategic information; recently, they have been much
used to estimate carbon sequestration capability of for-
ests as part of climate change research (e.g. Neigh et al.
2013). There are many examples of the application of
this remotely sensed imagery for forest inventory both
with estimation of the precision of estimates, in one
form or another, (Cohen et al. 2013; Tomppo et al. 2014;
Kangas et al. 2016; Ringvall et al. 2016) and without preci-
sion estimation (Du et al. 2014; Ometto et al. 2014; Waser
et al. 2015; Clerici et al. 2016; Immitzer et al. 2016).
There is also a long history of forest inventory done at

other scales, often down to compartment level or
smaller, for tactical or operational management purposes
or for other reasons (Ahamed et al. 2011; Corona et al.
2014; Mandallaz 2013; Melville et al. 2015; McRoberts
et al. 2006, 2016). Such inventory generally uses ‘design-
based’ sampling which involves selection from the forest
population under consideration of a random sample.
This is done using some sampling design such that the
probability of inclusion of any sampling unit from the
population is known. Design-based sampling may be aided
also through use of one or more auxiliary variables
through which the statistical efficiency of the inventory
may be improved, that is, the precision of the estimates in-
creased (Gregoire and Valentine 2008, Chap. 6). Of course,
if no suitable auxiliary variable(s) can be identified, design-
based inventory can only use simple random sampling.
One way to use auxiliary variables with design-based

sampling is to undertake double sampling, where the
auxiliary variable is measured on a first-phase sample
and the target variable is measured on a smaller sub-
sample in a second phase; the sampling design can differ
between the first and second phase. This approach aims

to minimise the time, effort and cost involved with sam-
pling whilst achieving the level of precision required in
the estimate of the population mean or total. Further, it
may be anticipated that the higher is the level of correl-
ation between the target and auxiliary variable, the
higher will be that precision.
The estimates of the population mean from such

double samples have often been determined using one
of a number of what are termed ‘ratio’ estimators.
These are used in many areas of research, including
economics (Knottnerus 2011), medicine (Al-Omari and
Bouza 2015), agriculture (Francis et al. 1979; Reich
et al. 1993), land- use assessment (Li et al. 2014) and
animal ecology (Stevenson 1979; Neilson et al. 2013).
Their principles are described by Cochran (1977, Chap.
6) and theoreticians continue to develop them for par-
ticular circumstances (e.g. Oral and Oral 2011; Lin and
Chao 2014; Magnussen et al. 2014; Al-Omari and
Bouza 2015; Weiskittel et al. 2015; Kumar and Chhapar-
wal1 2016; Ringvall et al. 2016). Another method that is
being used increasingly is ‘model-assisted’ estimation;
Baffetta et al. (2009) offer a formal and generalised descrip-
tion of its approach whilst Kangas et al. (2016) offer a
recent example of its use.
Many of the commonly used double sampling estima-

tors use sample data that have a similar form, although
somewhat different sampling methods may have been
used to obtain them. To the practitioner of forest inven-
tory dealing with any particular forest population, it is
often far from obvious as to which of the sampling
methods and estimators available should be used for that
population to provide the ‘best’ inventory result. By ‘best’
here is meant a result that, for the sampling effort that
the resources available can afford, produces an unbiased
estimate of the population mean and its standard error
and which has the minimum possible estimate of the
standard error and the corresponding confidence limit.
The present work aims to address this issue by

comparing estimates of population means and their
standard errors obtained using each of model-assisted
estimation and a number of the more commonly used
ratio estimators, when these are applied with double
sampling in forest inventory. Further, these results are
compared with those obtained using simple random
sampling so that the advantage gained with the
double sampling estimators may be assessed. These
comparisons are done through simulation studies
using five example forest populations that cover a
range of rather different forest types and target vari-
ables. As well as comparing sampling methods, also
examined are the effects on estimation efficiency both
of changing the level of correlation between the target
and auxiliary variable and of changing the sizes of the
first- or second-phase samples.
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Methods
Estimators
Numerous authors have described in formal detail the
various design-based sampling techniques and estima-
tors used in forest inventory (Schreuder et al. 1993; Kan-
gas and Maltamo 2006; Gregoire and Valentine 2008;
Mandallaz 2008; Ståhl et al. 2016); these texts informed
the approach and the estimators considered here.
Following Schreuder et al. (1987), many double sam-

pling estimators assume that, over the population as a
whole, a linear regression model relates a target variable
of interest (Y) to an auxiliary variable (X) as

Y ¼ αþ βX þ � ; ð1Þ
where α and β are parameters and the error term (ϵ) has
variance V(ϵ), given by

V �Þ ¼ φ2Xg ;
� ð2Þ

where φ2 is a variance and g is a constant that takes a
value ≥0.
Many commonly used ratio estimators assume that

the Y–X relationship in the population passes through
the origin, that is, α = 0 in Eq. (1). Ratio estimators that
make that assumption will be considered in the present
work. For such estimators, if the Y–X relationship is not
linear, it may be possible to make it so through data
transformation. If it does not pass through the origin, it
may be possible to transform the data to make it so; that
possibility is considered later in the present work.
In the case of model-assisted estimation, other models

may be used that employ the full power of linear or
non-linear regression analysis with one or more auxiliary
variables as appropriate. For the present work, Eq. (1),
with the intercept α retained, will be used for model-
assisted estimation as it is both simple and commonly
used; in a forest inventory context, Mandallaz (2013)
employed a rather more complex case of model-assisted
estimation where the intercept was retained also.
Often too, it is assumed that the Y–X relationship is ho-

moscedastic, that is, g = 0 in Eq. (2); as it is a common cir-
cumstance, this will be assumed to be the case in the
present work for both ratio estimators and model-assisted
estimation. Särndal et al. (1992, Sects. 7.3, 7.4) considered
this issue of hetereoscedasticity for one of the ratio esti-
mators used here (the mean of ratio estimator—see later).
Certainly, it would require that weighted least-squares re-
gression be applied for model-assisted estimation.
Further work beyond the present would be necessary

to examine the effects of variations to any of the various
model assumptions made above.
Suppose the objective of an inventory is to estimate

the mean, Y , of the target variable Y in a population that

consists of a total of N sampling units and where an auxil-
iary variable X is available. In the context of forest inven-
tory, the sampling units might be individual trees, or fixed
area plots, or points at which variable radius plot sampling
(known also as Bitterlich sampling) is done (Gregoire and
Valentine 2008 Chaps. 7, 8; West 2016). If the sampling
units are individual trees, target and/or auxiliary variable
values will be obtained as measurements of some charac-
teristic of the individual trees. If the sampling units
are fixed area or variable radius plots, the measure-
ments will be values for whole plots derived from the
trees within any one plot.
Suppose a double sample is taken from the population.

Assume the first-phase sample is either a simple random
sample of size f (<N) or it may involve a complete enu-
meration of the entire population (f =N) as in ‘wall-to-
wall’ inventory. Assume the values of the auxiliary variable
are measured on the first-phase sampling units and denote
them as xfi (i = 1, 2, …, f). Suppose that from this first-phase
sample, a second-phase sub-sample of size n (<f) is se-
lected, by methods considered later, on which the target
variable is measured and denoted as yi (i = 1, 2, …, n), with
the corresponding (measured in the first-phase) auxiliary
variable values denoted as xi (i = 1, 2, …, n).
A number of sampling methods and estimators that

were chosen for the present work and that might be
used under these circumstances to provide estimates of
the population mean are listed in Table 1. The first is
simple random sampling (Eq. 3.2); note that there is
no (Eq. 3.1) for reasons outlined below. Excepting
model-assisted estimation (Eqs. 6.1 and 6.2), all the
others are ratio estimators. The ratio of means (Eq. 4.1)
(Cochran 1977, Sects. 6.2–6.4), mean of ratios (Eq. 5.1)
(Hartley and Ross 1954) and probability proportional to
size (PPS) sampling (Eq. 7.1) (Cochran 1977, Sect. 9A.2;
Särndal et al. 1992, Sect. 3.6; Schreuder et al. 1993,
Sect. 3.2.3; Gregoire and Valentine 2008, Sect. 3.3.1)
estimators have been in long use in a wide variety of
sampling contexts.
The ratio estimator Eq. (8.1) is perhaps less well

known outside forest inventory circles. It was developed
for particular use in forest inventory by Grosenbaugh
(1964, 1965, 1976) and is used to obtain estimates with
high precision of amounts of wood available for harvest
from smallish forest tracts, usually of only tens of hect-
ares; Gregoire and Valentine (2008, p. 382 et seq.) give a
modern summary of the method. Various examples of
its use have been reported (Johnson et al. 1967; Johnson
and Hartman 1972; Stevenson 1979; Ringvall and Kruys
2005) and various developments to it have been made
(Williams and Schreuder 1998; Gregoire and Valentine
1999; Bondesson and Thorburn 2008; Magnussen 2001;
Grafström 2010). In its original form, it was known as
sampling with probability proportional to prediction,
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referred to commonly as 3P sampling. West (2011,
2017) developed its approach for more general use and
has termed it quick probability proportional to size
(QPPS) sampling, the term applied generally to the ap-
proach in Table 1 (Eqs. 8.1 and 8.2).
The ratio estimators of Table 1 all assume that the Y–X

relationship over the population as a whole passes through
the origin. Of course this is not necessarily the case when
any individual sample is chosen from the population and
it may be that this leads to problems with the estimation
of the population mean; the present simulation studies
aimed to examine if this was a problem. In the case of
model-assisted estimation (Eqs. 6.1 and 6.2), the model
used allows that the Y–X relationship over the population
may or may not pass through the origin; the implications
of this are discussed later.
In the second and third columns of Table 1, the

double sampling estimators have been divided into two
groups. In the second column (Eqs. 4.1–8.1), it has been
assumed that the first-phase ‘sample’ involved measure-
ment of the auxiliary variable on each and every sam-
pling unit in the entire population. Of course, this is a
not a sample as such but is complete enumeration of the
auxiliary variable across the population. Theoreticians
have often presented these estimators only in this form
(Hartley and Ross 1954; Cochran 1977, Eqs. 6.1 and 6.9;
Grosenbaugh 1965, Eq. 3PSEVENTH; Schreuder et al.
1993, Eqs. 3.7 and 3.9). Such complete enumeration is
appropriate in practice when the population is not too
large or ‘wall-to-wall’ inventory is being undertaken.
However, as shown in the third column (Eqs. 3.2–8.2),
all the double sampling estimators except PPS (Eq. 7.1)
may be formulated assuming that the first-phase sample
is a simple random sample that is smaller, usually much
smaller, than the whole population; in these cases, the
population size (N) is not necessarily known. There can
be difficulties with selecting a simple random sample
from a large population of unknown size, but methods
are available to do so for most forestry circumstances
(West 2016).
The various methods considered here have been sub-

divided also in the rows of Table 1 depending on the na-
ture of the sampling involved. Firstly, there is simple
random sampling (Eq. 3.2) that involves only a single
sample on which the target variable only is measured.
All the remaining estimators involve double sampling
with either simple random sampling or complete enu-
meration of the auxiliary variable in the first-phase. The
second to fourth rows (Eqs. 4.1–6.2) involve simple ran-
dom sampling also in the second phase. The fifth and
sixth rows (Eqs. 7.1–8.2) involve sampling with probabil-
ity proportional to size in the second phase, size being
determined by the auxiliary variable value of a sampling
unit. The case in the fifth row, PPS sampling (Eq. 7.1), is

a long recognised and standard form of probability pro-
portional to size sampling (Cochran 1977, Sect. 9A.2).
QPPS sampling (Eqs. 8.1, 8.2) uses a form of probability
proportional to size sampling based on work of Lahiri
(1951). This allows a decision to be made to include or
not a sampling unit in the second-phase sample immedi-
ately the auxiliary variable value has been measured on
that sampling unit; that is how the term ‘quick’ in the
name of these methods was derived. Where field sam-
pling is required for both samples in both phases,
Lahiri’s method removes the need to revisit sampling
units to select the second-phase sample and then meas-
ure the target variable on it. However, QPPS sampling
does require that a preliminary survey of the population
be undertaken to determine the range of values of the
auxiliary variable that will be encountered anywhere in
the population.
For several of the estimators in Table 1, an analytical

estimator of the standard error of the estimate of the
population mean, σ̂ Y

� �
, is well established and these are

shown in the table. In all other cases, the standard error
was estimated using bootstrapping as described below;
research always continues to develop analytical estima-
tors (e.g. Mandallaz 2013), but bootstrapping was ap-
plied here for consistency across cases where analytical
estimators are less well known or not established.

Simulated populations
Forest inventory simulations were conducted with five
example populations each containing 10,000 sampling
units and each with a different target variable. All five
were based on real forest populations. The first two ex-
ample target variables were stand basal area and stand
stocking density in a primary, closed canopy rainforest
growing in a warm temperate climate on Yakushima Is-
land in southern Japan (Kohyama 1986). The target vari-
ables in the third and fourth examples were individual
tree stem diameters over bark at 1.3 m above ground in
each of two 11-year-old plantation forests, one of
Pinus radiata D.Don in temperate south-eastern
South Australia and the other of a mixture of
Australian rainforest species in subtropical north-eastern
New South Wales, Australia; data collected from those
forests were available to the author. The fifth example tar-
get variable was stand stem wood volume of sawlog (vol-
ume of logs of a size suitable for sawmilling) in native
regrowth eucalypt forest in temperate north-eastern
Victoria, Australia (Hamilton and Brack 1999). Examples
1, 2 and 5 represent forest populations in which the sam-
pling units are fixed area or variable radius sample plots.
Examples 3 and 4 represent populations in which the
sampling units are individual trees.
These examples were used also by West (2017) to inves-

tigate various properties of QPPS sampling; additional
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details about the forests concerned are given there.
As shown in his Fig. 1, the frequency distributions of
the five target variables differed widely in shape, from
quite symmetrical through to having a marked skew
to the right or left. The examples were chosen delib-
erately because of this wide variation in population
structure, typical of the variation encountered in dif-
ferent forest populations.
To produce a simulated population data set for any

one of the five examples, a set of 10,000 auxiliary vari-
able values were generated, based on the frequency dis-
tribution of that example. A set of 10,000 corresponding
target variable values were then generated by adding
random normal deviates to these auxiliary values using a
standard deviation chosen by trial and error to give a
particular level of correlation between the target and
auxiliary variables. For each of the five examples, nine
such target variable data sets were generated with correl-
ation levels chosen to be close to values of 0.1, 0.2, ...,
0.9. Scatter plots of target against auxiliary variables for
the first 500 of the 10,000 values generated for one of
the examples for each of two correlation levels are
shown in Fig. 1. As is evident there, the data were gener-
ated so that the target and auxiliary variables bore a
straight-line relationship to each other that, over the
whole population, passed through the origin. It was as-
sumed also that the target-auxiliary variable relationship
was homoscedastic as mentioned in the discussion
following Eqs. (1) and (2).

Simulation of inventory
Simulations of inventory were carried out to examine
differences arising from all possible combinations of the
five examples, the 10 methods and estimators (Table 1),
the nine levels of correlation between the target and

auxiliary variables and from three different second-phase
sample sizes, that is, 5 × 10 × 9 × 3 = 1350 possibilities.
For any one of these 1350 possibilities, 5000 samples
were drawn from the example population concerned,
using random sampling techniques appropriate to the
method or estimator being considered, to yield 5000
estimates of the population mean, Y , and its standard
error, σ̂ Y

� �
. Thus, the results reported here derive from

a total of 1350 × 5000 = 6¾ million simulated samples.
Three different second-phase sample sizes were con-

sidered because it can be expected that the precision of
estimate of the population mean will increase as the
sample size increases, that is, its standard error will de-
crease. Three arbitrarily chosen second-phase sample
sizes (n) were tested, 10, 40 and 100. For estimators
(4.1–8.1), the first-phase ‘sample’ included the auxiliary
variable values of the entire 10,000 sampling units of a
population. For estimators (4.2–8.2), the corresponding
first-phase sample sizes (f ) were 25, 95 and 240, respect-
ively, for examples 1 and 3–5 and 30, 290, 120 respect-
ively for example 2; experience by the author with these
examples had suggested that these might be appropriate
first-phase sample sizes. In normal use of QPPS (Eqs. 8.1
and 8.2), the second-phase sampling process employed
makes it impossible to ensure a particular second-phase
sample size is achieved. However, in these simulations
the auxiliary variable values were in fact known in all of
the sampling units in the population. This meant it was
possible to select a given number of sampling units that
conformed to the selection criteria for a second-phase
sample for QPPS sampling and a given number that did
not conform to those criteria to complete both first- and
second-phase samples of the required size; without this
constraint, it would have been impossible to compare

Fig. 1 Example of simulated data. The example is of stand basal area of Japanese rainforest and shows scatter plots of 500 randomly selected
values of the 10,000 simulated population values of the variable of interest (target variable) plotted against the corresponding auxiliary variable
values when the correlation between the two variables was a 0.9 and b 0.7. The data were generated so that the straight-line relationship between
the two variables for the 10,000 data values passed through the origin
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the QPPS estimators properly with the others because
their first-phase sample sizes would have differed from
that of the others.
For the estimators of Table 1 for which no analytical

estimator of the standard error of the estimate of the
population mean from any sample was available, the es-
timate was determined using bootstrapping. Wang and
Butar (2006) reported that bootstrapping seems to per-
form well when applied to double sampling methods.
West (2017) found it was the most appropriate estimator
of the standard error of the estimate of the population
mean for Eq. (8.2) when compared with some analytical
estimators that had been proposed by various authors.
When performing bootstrapping with any of the sam-

pling methods used here, a single bootstrap sample was
chosen from the original sample by sampling with re-
placement from each of the first- and second-phase sub-
samples so that the sizes of both sub-samples in the
bootstrap sample was the same as in the original sample.
Bootstrapping of any one sample was based on 1000
bootstrap samples a number that was found to give con-
sistent results for the five examples. Given m = 1000

population mean estimates from 1000 such bootstrap
samples, the estimate of the standard error, σ̂ Y

� �
, of the

estimate of the population mean from the original

sample was determined as Σm Y k−Y
� �2

� 	
=m


 �1=2

,

where Y k was the kth (k = 1, …, m) bootstrap estimate

of the population mean and Y ¼ ΣmY k
� �

=m.

Results
Bias in estimators
The bias in estimates of the population mean based on
the means of the simulation estimates for each example
and for the three second-phase sample sizes are shown
in Table 2. There was no indication for any of the five
examples or any of the methods or estimators that the
level of bias was related to the target-auxiliary variable
correlation level. Thus, each result in Table 2 is the
mean of the 45,000 simulations done over all nine cor-
relation levels for each example. There was little evi-
dence of any appreciable bias with any of the methods
or estimators or with any second-phase sample size. The

Table 2 Bias (%) in estimates of the population mean from simulations of inventory in five example populations

Example Methods with complete enumeration of N sampling units
as first phase

Methods with first-phase sample size = f

Ratio of
means

Mean of
ratios

Model-
assisted

PPS
sampling

QPPS
sampling

Simple random
sampling

Ratio of
means

Mean of
ratios

Model-
assisted

QPPS
sampling

Second-phase sample size = 100

1 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.00 − 0.61

2 − 0.01 − 0.01 − 0.02 0.02 0.03 − 0.01 − 0.02 −0.02 − 0.02 0.13

3 − 0.01 − 0.01 − 0.01 0.00 0.01 − 0.01 − 0.01 − 0.01 − 0.01 − 0.47

4 − 0.02 − 0.02 − 0.02 − 0.03 − 0.01 − 0.02 − 0.02 − 0.02 − 0.02 − 0.72

5 0.01 0.00 0.01 0.00 − 0.01 0.02 0.01 0.00 0.01 − 0.65

Second-phase sample size = 40

1 0.02 0.03 0.02 0.02 0.04 0.02 0.02 0.03 0.02 − 0.55

2 0.00 0.00 0.01 0.04 0.01 − 0.02 0.00 0.00 0.01 0.03

3 0.00 0.00 0.00 0.03 0.00 0.01 0.00 0.00 0.00 − 0.47

4 0.02 0.02 0.02 − 0.02 − 0.01 0.03 0.01 0.01 0.01 − 0.70

5 0.04 0.04 0.05 0.01 0.03 0.05 0.04 0.03 0.04 − 0.57

Second-phase sample size = 10

1 − 0.02 − 0.01 − 0.02 0.06 − 0.07 0.01 0.00 0.01 0.00 − 0.76

2 − 0.03 − 0.04 − 0.03 − 0.01 − 0.01 − 0.08 − 0.02 − 0.03 − 0.02 − 0.03

3 0.01 0.01 − 0.02 0.00 0.00 − 0.03 − 0.02 − 0.02 − 0.04 − 0.55

4 0.03 0.03 0.02 − 0.02 − 0.03 0.02 0.04 0.04 0.03 − 0.84

5 0.02 0.02 0.01 − 0.02 0.00 0.01 0.02 0.01 0.00 − 0.75

Bias was determined as the difference between the mean of the simulation estimates of the population mean and the population true mean, expressed as a
proportion of the true mean. Results are shown for each of the methods applied in this work both when a complete enumeration of the auxiliary variable was
done in the first-phase for the entire population or when the first-phase sample was smaller, of size f (<N). Each value shown in the table is the mean of 45,000
simulations of each estimator, those being made up of 5000 simulations for each of nine levels of target-auxiliary variable correlation. Results are given also when
three different second-phase sample sizes were used. The examples are numbered as 1 – Basal area of Japanese rainforest, 2 – Stocking density of
Japanese rainforest, 3 – Tree stem diameters, P. radiata, South Australia, 4 – Tree stem diameters, rainforest planting, New South Wales, 5 – Stand
sawlog volume, Victorian eucalypt forest. Values shown as zero were actually <0.005%
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QPPS estimator (Eq. 8.2) showed a slight tendency to
under-estimate the population mean, but even then, the
under-estimate was always less than 1%.
Several tests were made of the estimates of the stand-

ard error of the estimates of the population mean.
Firstly, consideration was given to simple random sam-
pling (Eq. 3.2). Consider a population of size N in which
the target variable of the ith sampling unit takes the
value yi; these target variable values were known in each
of the five population examples used here. Following
Sokal and Rohlf (1995, Eq. 7.2a), the expected value of
the standard error σ Y

� �� �
of the set of sample means of

size n determined using simple random sampling from
the population is

σ Y
� � ¼ σ=n1=2

; ð9Þ

where σ = {[ΣN (yi – μ)2]/N}½ and μ = (ΣN yi)/N. For each
of the five example populations, the average deviation
from this expected value of the actual standard error of
the 45,000 simulation estimates of the population mean
obtained using simple random sampling is shown in the
second column of Table 3. The deviations were small,
ranging over − 0.3 to + 0.7%, and showed no apparent

pattern over the five examples or with differing sample
sizes. These results are consistent with the theoretical
expectation of Eq. (9) and confirm the efficacy of the
simulation process employed here.
However, whilst the square of the estimate of the

standard error of the estimate of the population mean

obtained using a simple random sample, that is σ̂ Y
� �2

from Eq. (3.2), is an unbiased estimator of the square of
the standard error of the population true mean (its vari-
ance), that is σ2 in Eq. (9), its square root is not. That is,
σ̂ Y
� �

is not an unbiased estimator of σ (Gurland and
Tripathi 1971; Sokal and Rohlf 1995, p. 53). The bias is
generally small for larger sample sizes, but may become
appreciable for small samples. Of course, it is the es-
timate of the standard error that is of prime interest
to the user of inventory because it, rather than the
variance, is used in determining the confidence limit
of the estimate. Thus, bias in the estimate of standard
error will introduce bias in the confidence limit and
it is of interest to the user to know how large that
bias might be. The deviations, from their expected
value (Eq. 9), of the mean of the 45,000 estimates of the
standard error of the estimate of the population means
from the simulations using simple random sampling are
shown in the third column of Table 3. There was consist-
ent under-estimation with all five examples and the bias
increased as sample size decreased, consistent with theor-
etical expectations. However, with a sample size of n =
100, the under-estimation was small over all five exam-
ples, never being more than 0.4%.
Analytical formulae such as Eq. (9) are not necessarily

available to determine the expected value of estimates of
the standard error of estimates of the population mean
for the other forms of sampling being considered here
(Table 1). Accordingly, the level of bias in such estimates
was determined as the deviation of their mean over
many simulations with the actual standard error of the
corresponding estimates of the population means from
the simulations. This has been done in the fourth col-
umn of Table 3 for results obtained using simple random
sampling. The results there are little different from those
in the third column which were deviations from the ex-
pected values. This confirms the efficacy of using this
approach to investigate bias in estimates of the standard
error of estimates of the population mean.
These biases were then determined for all other sam-

pling methods considered here, in each case the bias be-
ing considered in relation to the actual standard error of
simulation means. Results are shown in Table 4. As for
bias in parameter estimates (Table 2), there was no evi-
dence of differing levels of target-auxiliary variable cor-
relation on the level of bias, so data in Table 4 were

Table 3 Bias (%) in estimates of standard errors of estimates
of the population mean in inventory using simple random
sampling

Example Bias in relation to expected values Bias in relation
to actual standard
error of simulation
means of mean of
simulation estimates
of standard error

Of actual standard
error of simulation
means

Of mean of simulation
estimates of standard
error

Sample size (n) = 100

1 − 0.04 − 0.23 − 0.19

2 0.53 − 0.37 − 0.87

3 0.48 − 0.26 − 0.73

4 0.01 − 0.21 − 0.21

5 − 0.32 − 0.27 0.07

Sample size (n) = 40

1 0.46 − 0.65 − 1.10

2 0.28 − 0.89 − 1.15

3 0.73 − 0.79 − 1.49

4 0.24 − 0.62 − 0.85

5 0.70 − 0.68 − 1.36

Sample size (n) = 10

1 − 0.17 − 2.78 − 2.60

2 − 0.09 − 3.46 − 3.37

3 0.60 − 3.27 − 3.84

4 0.17 − 2.63 − 2.79

5 − 0.23 − 3.05 − 2.81
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obtained by pooling results for the 45,000 simulations in
each case over the nine levels of correlation. The results
obtained using simple random sampling that were
shown in the fourth column of Table 3 have been re-
peated in Table 4; they were determined on the same
basis as the remainder of the results in Table 4 and so
may be compared directly with them. The under-
estimation of standard errors that was evident and
discussed for results obtained using simple random sam-
pling in Table 3 is evident consistently across all sam-
pling methods in Table 4. It became larger as the
second-phase sample size decreased. For a second-phase
sample size of 100, under-estimation was generally less
than 1% for all five example populations. It generally
tended to be slightly less for results obtained using sim-
ple random sampling than for the other methods.
At the smallest second-phase sample size of 10 in

Table 4, the mean of ratios and QPPS sampling estima-
tors appear to display somewhat greater under-
estimation of standard errors than the other methods.
And in particular for this sample size, model-assisted
sampling in example 2 (the stocking density of Japanese
rainforest) stands out from the other results by display-
ing gross over-estimation of estimates of standard error.

The reason for this is apparent from information in Fig. 2
which shows the actual second-phase sample target and
auxiliary variable data values from two example simula-
tions from that population. The example in Fig. 2a was a
case where, by chance, the sample selected showed a
non-significant relationship between the target and aux-
iliary variable. Even though over the whole population
from which this example sample was chosen, this correl-
ation was 0.7, it is, of course, possible to find an individ-
ual sample where the correlation is poor. In this
example sample, the model-assisted estimate of the
standard error of the estimate of the population mean
from the sample was 7775, much greater than the actual
standard error over the 5000 simulations of 1769; such
an over-estimation is inevitable when there is no sub-
stantial relationship between the target and auxiliary var-
iables in the sample. By contrast, in the case of Fig. 2b,
there was an appreciable and significant target-auxiliary
variable correlation of 0.77 and an estimate of the stand-
ard error of the estimate of the population mean from
the sample of 927, much lower than the actual standard
error. In the example 2 simulations with the smallest
second-phase sample size, it seems that cases such as
that shown in Fig. 2a must have occurred sufficiently

Table 4 Bias (%) in estimates of standard errors of estimates of the population mean for the various methods considered here

Example Methods with complete enumeration of N sampling units as
first phase

Methods with first-phase sample size = f

Ratio of
means

Mean of
ratios

Model-
assisted

PPS
sampling

QPPS
sampling

Simple random
sampling

Ratio of
means

Mean of
ratios

Model-
assisted

QPPS
sampling

Second-phase sample size = 100

1 − 0.7 − 0.8 − 0.9 − 0.7 − 1.7 − 0.2 − 0.8 − 0.9 − 0.9 − 1.3

2 − 0.7 − 0.9 − 0.7 − 0.7 − 0.5 − 0.9 − 1.0 − 0.9 − 1.1 − 0.9

3 − 1.1 − 2.1 − 0.7 − 1.1 − 0.8 − 0.7 − 1.1 − 1.2 − 1.3 − 0.9

4 − 1.2 − 1.3 − 1.2 − 1.0 − 0.9 − 0.2 − 0.7 − 1.0 − 0.8 − 0.8

5 − 0.6 − 0.3 − 0.3 − 0.9 − 0.5 0.1 − 0.2 − 0.2 − 0.3 − 0.4

Second-phase sample size = 40

1 − 1.5 − 2.7 − 2.2 − 0.7 − 1.8 − 1.1 − 2.0 − 2.1 − 1.9 − 1.6

2 − 1.2 − 2.3 − 1.4 − 1.4 − 2.2 − 1.2 − 1.9 − 2.2 − 1.5 − 2.3

3 − 1.5 − 2.4 − 1.9 − 1.1 − 2.0 − 1.5 − 2.3 − 2.4 − 2.0 − 1.9

4 − 0.9 − 2.1 − 1.9 − 1.4 − 1.5 − 0.8 − 1.6 − 1.8 − 1.6 − 1.6

5 − 1.1 − 2.3 − 1.9 − 0.7 − 1.8 − 1.4 − 2.2 − 2.4 − 2.1 − 1.6

Second-phase sample size = 10

1 − 2.7 − 8.1 − 1.0 − 2.6 − 8.2 − 2.6 − 6.8 − 7.3 − 2.3 − 7.4

2 − 3.5 − 8.3 35.4 − 3.6 − 8.5 − 3.4 − 7.0 − 7.5 21.4 − 7.4

3 − 3.4 − 8.4 − 1.2 − 3.0 − 8.2 − 3.8 − 7.7 − 7.9 − 2.6 − 7.5

4 − 3.5 − 8.3 4.0 − 3.0 − 8.0 − 2.8 − 6.9 − 7.3 − 1.2 − 7.1

5 − 3.4 − 8.3 8.6 − 3.1 − 7.8 − 2.8 − 7.2 − 7.6 1.5 − 7.3

Bias was determined as the mean of differences between estimated values of standard errors of estimates of the population mean from simulations and the
actual standard error of the simulation estimates of the population mean, expressed as a proportion of the actual value. The structure and content of the table
is otherwise as that of Table 2. The column headed ‘Simple random sampling’ contains the same values as in the fourth column of Table 3
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often that model-assisted sampling was unable to offer
reasonable estimates of the standard error of the es-
timate of the population mean with the smallest
sample size.

Relative efficiencies of double sampling estimators
For each of the five examples and for the different second-
phase sample sizes, the efficiency of all the double sam-
pling estimators relative to results obtained using simple
random sampling are shown in Table 5 when the level of
correlation between the target and auxiliary variable
values in the whole population was 0.9. These values were
determined as the difference between the mean of the
simulation standard error estimates of the population
mean for each double sampling estimator and the mean of
the simulation standard error estimates obtained using
simple random sampling, expressed as a proportion of the
mean obtained using simple random sampling.
As might be expected, all the double sampling esti-

mators were much more efficient than estimates
obtained using simple random sampling. They were
about 50–65% more efficient when the first-phase
sampling involved complete enumeration of the N
sampling units in the population but less, 25–35%,
when the first-phase sample was much smaller
(methods with first-phase sample size = f in Table 5).
This higher efficiency in the former case is inevitable
because much more information is being used from
the population because of the complete enumeration
of the auxiliary variable.
However, there seemed to be no consistent or substan-

tial differences between the efficiencies of any of the

double sampling estimators. The only exception was for
model-assisted sampling in example 2 with the smallest
second-phase sample size, which was clearly much less
efficient than any of the other estimators, although still
appreciably more efficient than results obtained using
simple random sampling; the reasons for that were dis-
cussed earlier and explained through Fig. 2.
The results in Table 5 were obtained from popula-

tions in which the target-auxiliary variable correlation
level had been set at 0.9. The only difference that was
found in the results for the populations with other
levels of target-auxiliary variable correlation was that
the improvement in efficiency of the double sampling
estimators, when compared with results from simple
random sampling, declined progressively as the correl-
ation level declined. However, the improvement still
remained even at the lowest correlation level used, 0.1.
Further, there was no evidence of any difference in effi-
ciency of any of the double sampling estimators at any
particular level of correlation.
As an example, Fig. 3 shows for the stand basal

area of Japanese rainforest (population example 1)
how the sampling efficiency of each of the double
sampling estimators changed, relative to that achieved
using simple random sampling, as the level of the
target-auxiliary variable correlation changed. These re-
sults were for the case of a second-phase sample size
of 100. The advantage of the greater first-phase sam-
ple size is obvious and the progressive improvement
in efficiency with increasing correlation is apparent.
Similar diagrams were drawn for all the example pop-
ulations; in each case, all of the five parts of those

Fig. 2 Examples illustrating problems with model-assisted estimation. Two examples are shown of second-phase simple random samples, of size
10, chosen from amongst the 5000 simulations done with population example 2, the stocking density of Japanese rainforest, with a first-phase
sample size of 30 and where the target-auxiliary variable correlation over the population had been set at r = 0.7. In both cases, the solid line
shows the ordinary least-squares straight-line fit to the target-auxiliary variable data, that is, the model used to obtain model-assisted estimates of
the population mean using Eq. (6.2). In the case of a the estimates of the parameter values were α = 3533 and β = 0.083, but the correlation level
between the target and auxiliary variable data was r = 0.51, which was not significantly different from zero (at p = 0.05). In the case of b, α = 7800,
β = 0.604 and the correlation was r = 0.77, which was significantly greater than zero (at p < 0.01 at least)
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diagrams were virtually identical overlays of each
other, showing that all the double sampling estimators
were behaving with the same efficiency of estimation
in any of the examples.

Discussion
The results suggested that all the double sampling esti-
mators considered here (Table 1) performed equally well
with any of the five example populations with which
they were tested. They all displayed negligible bias as es-
timators of the population mean (Table 2). This is per-
haps somewhat unexpected because it is well known
that ratio estimators are subject to bias (Hartley and
Ross 1954; Cochran 1977, Sect. 6.3). In the case of the
mean of ratio estimator (Eqs. 5.1 and 5.2), the bias cor-
rection factor of Hartley and Ross (1954) was incorpo-
rated into the estimator. Otherwise, no correction
factors were used in the other estimators and bias was
still negligible, even when the second-phase sample size
was small (n = 10, a sampling intensity of 0.1%).
All the estimators were slightly biased towards under-

estimation of the standard error of the estimate of the
population mean (Table 4) whether or not an analytical

estimator (Eqs. 3.2, 4.1, 7.1) or bootstrapping (all other
cases) was used. This bias was evident even when simple
random sampling was used and, as discussed in the pre-
vious section, this was to be expected theoretically.
There was no hint that the analytical estimators
were superior to bootstrapping in this context. The
bias increased as the second-phase sample size de-
creased, but with the largest second-phase sample
size used here (n = 100, a sampling intensity of 1%)
the under-estimation was generally less than 1% over
all five example populations, a degree of bias that
would often be considered acceptable for many in-
ventory purposes.
All the double sampling estimators with their various

sampling designs were more efficient in determining the
standard error of the estimate of the population mean
when compared with results obtained using simple ran-
dom sampling. Their efficiency increased substantially as
the level of correlation between the target and auxiliary
variables increased (Fig. 3) and as the first-phase sample
size increased (Table 5, Fig. 3). In the case of the ratio of
means estimator with complete enumeration of the aux-
iliary variable over the whole population (Eq. 4.1),

Table 5 Sampling efficiency (%) of the various methods considered here relative to simple random sampling

Example Methods with complete enumeration of N sampling units as first phase Methods with first-phase sample size = f

Ratio of
means

Mean of
ratios

Model-
assisted

PPS
sampling

QPPS
sampling

Ratio of
means

Mean of
ratios

Model-
assisted

QPPS
sampling

Second-phase sample size = 100

1 − 59 − 53 − 58 − 58 − 57 − 28 − 25 − 28 − 29

2 − 55 − 47 − 55 − 63 − 52 − 31 − 26 − 31 − 27

3 − 57 − 55 − 56 − 58 − 56 − 28 − 27 − 28 − 29

4 − 59 − 52 − 59 − 62 − 57 − 28 − 24 − 28 − 29

5 − 61 − 52 − 61 − 65 − 58 − 29 − 24 − 29 − 30

Second-phase sample size = 40

1 − 59 − 54 − 58 − 58 − 58 − 28 − 26 − 28 − 29

2 − 54 − 47 − 54 − 63 − 52 − 31 − 26 − 31 − 28

3 − 57 − 56 − 56 − 58 − 57 − 28 − 27 − 28 − 29

4 − 59 − 53 − 59 − 62 − 57 − 29 − 25 − 28 − 29

5 − 61 − 53 − 60 − 65 − 58 − 29 − 24 − 29 − 29

Second-phase sample size = 10

1 − 58 − 56 − 55 − 58 − 59 − 31 − 28 − 29 − 33

2 − 53 − 49 − 22 − 62 − 53 − 31 − 27 − 14 − 30

3 − 56 − 57 − 52 − 57 − 58 − 30 − 29 − 26 − 31

4 − 59 − 55 − 52 − 62 − 59 − 31 − 28 − 28 − 33

5 − 60 − 55 − 51 − 65 − 61 − 31 − 27 − 27 − 33

Each value in the table was determined as the difference between the mean of the simulation estimates of the standard error of estimates of the population
mean for the estimator concerned and the mean when simple random sampling was used, as a proportion of the mean in the simple random sampling case.
Each value in the table was the mean of 5000 simulations when the target-auxiliary variable correlation level was 0.9. Otherwise, the structure of the table is
similar to that of Table 2. The results in the first row of the table are repeated in Fig. 3
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Cochran (1977, Sect. 6.6) showed that, for large sample
sizes, it will be a more efficient estimator than results
obtained using simple random sampling when

ρ > SXY Y
� �

= 2SYY X
� �

; ð10Þ

where ρ is the level of correlation between the target
and auxiliary variable in the sample being considered,
Y Y and Y X are the population means of the target and

auxiliary variables, respectively, and SY and SX are their
respective standard deviations. In the present simula-
tions, this condition was found to be satisfied in 80% or
more of all the samples selected from all five example
populations, the proportion rising rapidly to 100% as the
target-auxiliary variable correlation level increased. Thus,
it is not surprising that the double sampling methods used
here were consistently more efficient than results obtained
using simple random sampling. Of course, the very reason

Fig. 3 Effects of target-auxiliary variable level of correlation on efficiency of the various double sampling estimators for the stand basal
area of Japanese rainforest example. Scatter plots are drawn, against the target-auxiliary variable level of correlation, of the difference (%)
between the mean of the simulation estimates of the standard error of estimates of the population mean for the estimator concerned
and the mean of the standard error of estimates obtained when simple random sampling was used, as a proportion of the mean from
the simple random sampling case. The results are for the case that the second-phase sample size was 100. Each data point is the mean
of 5000 standard error estimates. Results are shown for the case that values of the auxiliary variable were available from a complete
enumeration of the population (•___•) or for a first-phase sample size of f = 240 (O- - -O). The annotation on each data point shows the
actual percentage difference for that point; values for correlation level of 0.9 there are shown also as the first line of Table 5
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for using auxiliary information with double sampling is to
gain this advantage.
All of the double sampling estimators seemed to be

equally efficient (Table 5). There was one exception,
where model-assisted estimation, with a small second-
phase sample size in population example 2, was less effi-
cient than the other estimators; as explained through
Fig. 2, this was a consequence of some samples having,
by chance, a non-significant relationship between the
target and auxiliary variables in the second-phase sam-
ple. Even though such sampling cases will occur when
using the ratio estimators, there was no hint that this led
to any estimation problems. In effect, the problem is
avoided in those cases because the Y–X relationship for
a sample is always forced through the origin with the
ratio estimators.
Of course, different theoreticians have developed all

these different double sampling estimators over the years
hoping to find estimators that are more efficient than
those devised previously. In particular, the PPS and
QPPS estimators (Eqs. 7.1, 8.1, 8.2) involve sampling
with probability proportional to size in selecting the
second-phase sample. No doubt the developers of those
estimators hoped that this would render them more effi-
cient than the other estimators tried here (Eqs. 4.1–6.2),
all of which used simple random sampling at the
second phase. However, the present results showed
no such gains.
Consideration of the way in which the estimators used

here operate offers an explanation as to why they display
similar efficiencies of estimation. Each of the ratio esti-
mators uses a method to estimate a ratio (shown as R̄ in
Table 1) from the second-phase sample. That ratio is
then used in subsequent computations. It is an estimator
of the slope (β) of the model assumed here as defined by
Eq. (1) with α = 0; Särndal et al. (1992, Sects. 7.3, 7.4)
discussed this specifically in relation to the mean of ratio
estimator. In the case of model-assisted estimation, this
slope is estimated also (it is shown as β in Eqs. 6.1 and
6.2) using least-squares regression with Eq. (1). For any
one sample, the distribution of the target and auxiliary
variable values along that straight-line relationship line
will tend to be uniform with simple random sampling,
whilst larger values will tend to be more common when
sampling with probability proportional to size. In regres-
sion analysis, those distributions may affect the precision
of the estimate of the slope, although in ways that are
not easily predictable (Box and Draper 1959), and, by in-
ference, the precision of the estimates here of R̄ and ul-
timately the estimates of the standard error of the
estimate of the population mean. The present results
suggest that neither the differences in the methods used
by the different estimators to estimate this slope nor the
differences in target and auxiliary variable distributions

from different forms of sampling in the second phase
(an issue recognised also by Gregoire and Valentine
2008, p. 165) have led to any appreciable differences in
efficiency of the various double sampling estimators
tested here. Särndal et al. (1992, p. 274) suggested that
model-assisted estimation should generally be more effi-
cient than ratio estimators, especially for larger sample
sizes; the present results suggest that this advantage was
negligible in any of the five examples.
As considered in the discussion following Eqs. (1) and

(2), it was an implicit assumption of the ratio estimators
used here that the target-auxiliary variable relationship
can be represented as a straight line passing through the
origin (Cochran 1977, Sect. 6.7; Särndal et al. 1992, Sect.
7.3; Gregoire and Valentine, 2008, p. 167). This is not a
problem with model-assisted estimation because the
intercept of the relationship on the target variable axis
(the parameter α in Eqs. 1, 6.1 and 6.2) is determined
and used directly as part of the estimation process.
When the population example data used here were ad-
justed by addition of a constant to the target variable
values, so that the target-auxiliary variable relationship
was no longer through the origin, additional simulation
studies found that the efficiency of all the ratio estima-
tors declined and rapidly became much less than results
obtained using simple random sampling if the constant
used was large enough (results not reported here). How-
ever, it was found also that if the target-auxiliary variable
relationship for any sample did not pass through the ori-
gin, it could easily be made to do so by fitting a straight
line regression to the data and then transforming the
sample data by subtracting the regression constant from
all the target variable values in the sample. The modified
data would then yield an estimate of the population
mean (to which the constant that had been subtracted
was added back) and would also yield the correct esti-
mate of the standard error of the estimate of population
mean because the variance of the sample data was un-
affected by the transformation (these results also not re-
ported here). Thus, even if the target-auxiliary variable
relationship does not pass through the origin, it is quite
simple to transform sample data so that any of the ratio
estimators used here may be applied satisfactorily.
On the other hand, if the target-auxiliary variable rela-

tionship in the population is not a straight line or if
more than one auxiliary variable is available, the ratio es-
timators can no longer be used. As mentioned earlier,
model-assisted estimation would then become appropri-
ate and the full power of linear, non-linear and multiple
regression may be employed in the place of the simple
straight-line model shown in Eqs. (1), (6.1) and (6.2).
When the data are heteroscedastic (g > 0 in Eq. 2),
weighted least-squares regression may be used to fit the
chosen model.
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The present results may be compared with those from
some other simulation studies. In two example forest
populations, Schreuder et al. (1987) tested several of the
estimators that were used here, the ratio of means esti-
mator, model-assisted estimation and PPS sampling
(denoted by them as Ŷrm, Ŷlr and ŶHT, respectively) in
circumstances that assumed the auxiliary variable value
had been measured on all sampling units in the
population. As in the present work, they found that
bias in estimates of the population mean was small
(less than ± 0.5%) with any of the estimators. How-
ever, they found that estimates of the standard error
of estimates of the population mean were often ap-
preciably smaller (as much as 85%) with model-
assisted estimation. They did not state specifically if
their target-auxiliary variable relationships passed
through the origin and the advantages they found
with model-assisted estimation may reflect that issue.
Reich et al. (1993) compared use of the ratio of

means estimator and model-assisted estimation to es-
timate the mean unit area biomass of a perennial
prairie grass, native to north America, across a 1500-
m2 sample area in Colorado; they used a process
equivalent to having the auxiliary variable measured
only on a first-phase sample rather than the entire
population. The relationship between their target and
auxiliary variable (the auxiliary variable was an esti-
mate by eye of grass biomass on any sampling unit)
was a straight line passing through the origin; they
did not specify the target-auxiliary variable correlation
level, but the nature of their sampling procedure sug-
gests it would have been quite high, perhaps greater
than 0.5. They found (their Tables 2 and 3) that both
estimators tended to under-estimate the true mean of
their population by 2–4%, the bias tending to decline
with increasing sample size. Consistent with present
results, they found that both estimators were equally
efficient (based on their results from bootstrap esti-
mation of standard errors) and both were appreciably
more efficient than results obtained using simple ran-
dom sampling by at least 24%, rising to as much as
61% as sample size increased. Francis et al. (1979)
also studied biomass sampling of prairie grass and
concluded that model-assisted estimation was prefera-
ble to the ratio of means estimator. However, as
Reich et al. noted (their p. 90), the target-auxiliary
variable relationships of Francis et al. did not neces-
sarily pass through the origin.
The present results appear to be at variance with

those of West (2017). He used the same simulation
examples as here, but considered only QPPS sampling
when the auxiliary variable was not measured on all
sampling units (Eq. 8.2). In contrast to the present
work, he used simulation data sets where the target-

auxiliary variable relationship did not pass through
the origin. This led to cases where the use of simple
random sampling appeared to give more efficient esti-
mates than QPPS sampling at lower levels of target-
auxiliary variable correlation. Correction of that issue
in the present work ensured that, at any positive cor-
relation level, all the estimators tested here gave more
efficient estimates than those obtained using simple
random sampling.

Conclusions
The present work compared results obtained when sam-
pling from five simulated forest populations that had ra-
ther differently shaped frequency distributions of their
target variables. Real forest population circumstances
were used to derive the simulated populations; these
then reflected a range of circumstances that might rea-
sonably be encountered in actual forest inventories.
Simulations of sampling from these five populations

were compared with the use of simple random sampling
and double sampling that used model-assisted estima-
tion or each of four ratio estimators (Table 1). Bias in es-
timates of the population mean was negligible for all the
methods used, even though their formulations did not
always preclude this possibility. Whilst all displayed
some bias in the estimation of the standard error of esti-
mates of the population mean, the bias was small and
consistent with theoretical expectations. In some cases,
analytical estimators were used to estimate standard er-
rors and in others bootstrapping was used; there was no
indication that bootstrapping was unsatisfactory.
Efficiency of all the double sampling estimators in-
creased as either the first or second-phase sample sizes
increased. All gave more efficient results than the use of
simple random sampling as long as there was some posi-
tive level of correlation between the target variable of
the inventory and the auxiliary variable being used; their
efficiency increased progressively as the level of
correlation increased.
However, none of the double sampling estimators was

more efficient than any of the others. This applied even
when sampling with probability proportional to size was
used in the second-phase of sampling rather than simple
random sampling. This seemed surprising because devel-
opment and use of these double sampling estimators
have continued over many years, presumably because it
has been anticipated that one or other of them is prefer-
able to the others. A few other studies have compared
one or more of these estimators from which it may be
concluded also that there is little difference between the
results obtained with any of these estimators.
With the exception of model-assisted sampling, it is

essential to the double sampling procedures that there
be no more than one auxiliary variable used and that the
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relationship between it and the target variable in the
population being considered can be represented ad-
equately as a straight line passing through the origin. If
the relationship does not pass through the origin, it was
found in additional work that was not reported in detail
here that the data could be transformed very simply to
ensure that it does so upon which the sample data may
be used readily to make the requisite estimates of popu-
lation variables. If more than one auxiliary variable is
available or the relationship between them and the target
variables is other than a straight line, then model-
assisted estimation must be used and may employ the
full power and options of regression analysis.
Two things must be borne in mind when consider-

ing the ramifications of the present results. Firstly,
whilst a positive level of correlation between the
auxiliary and target variables always led to increased
efficiency of the double sampling estimators over that
achieved using simple random sampling, there may be
more work involved in double sampling than with
simple random sampling alone because of the need to
obtain the data for the auxiliary variables. On the
other hand, to achieve the same efficiency of esti-
mates, it may be necessary to use a larger sample size
if simple random sampling with measurement of the
target variable only is to be done. It will depend on
the balance between the cost of these alternatives that
will determine which of them is preferable.
Secondly, the present results were obtained using just

five example populations. Whilst these were based on
real forest populations that had rather differently shaped
frequency distributions, there may be other populations
and target variables for which different conclusions
might be reached. However, the present results suggest
strongly that none of the double sampling estimators
considered here offers better results than any of the
others. That is, for many forest inventory tasks, users
may well be able to use whichever of the estimators is
most convenient to their purpose. Given that model-
assisted estimation has application in a wider range of
circumstances than the ratio estimators, perhaps it can
be recommended for more general use than the others.
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