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Influence of stand and site conditions on the
quality of digital elevation models underlying
New Zealand forests
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Abstract

Background: When aerial LiDAR data is used to construct Digital Elevation Models (DEMs) under vegetation, DEM
quality will invariably suffer due to attenuation of the laser pulses by the land cover. Although the ratio of ground
returns to outgoing pulses (GRper) is known to vary widely for forest applications, little research has quantified the
influence of forest stand structure and site conditions on this ratio. An understanding of how these factors
influence GRper is crucial for the development of accurate DEMs.

Methods: Using an extensive national dataset obtained from New Zealand’s plantation forests the objective of this
research was to develop a multiple regression model of GRper that could be used to specify the necessary LiDAR
pulse density for development of accurate DEMs.
Results: Within the dataset GRper averaged 30.5% ranging from 0.73 to 92.2%. The final model of GRper included
stand age, crop density, non-crop density and slope and accounted for 48% of the variance in GRper with root
mean square error (RMSE) of 13.9%. The percentage of ground returns declined exponentially as stand age, crop
and non-crop density increased and declined linearly with increases in slope. GRper was not substantially
affected by either the pulse density, stand aspect or whether the stand comprised Pinus radiata or Pseudotsuga
menziesii.

Conclusion: The developed model highlights the sensitivity of GRper to stand and site conditions. This model is
likely to be of considerable use in defining the optimal LiDAR pulse density across a range of forest
environments.
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Background
High resolution digital elevation models (DEMs) are be-
coming increasingly important for forest management.
Although DEMs may be built from land survey data,
they are becoming more commonly constructed using
remote sensing techniques. LiDAR has become accepted
as providing equivalent accuracy to photogrammetry
and interferometric synthetic aperture radar (IFSAR)
techniques on open ground and is superior under vege-
tation (Lefsky et al. 2002; Hodgson et al. 2003). LiDAR
offers a means of deriving digital elevation data over
large areas with a very high accuracy in the vertical
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coordinate, ranging between 10 and 15 cm (Baltsavias
1999; Guangping 1998; Wack et al. 2003; Wack and
Stelzl 2005).
The presence of vegetation reduces the ability of any

remote sensing to detect the ground to some degree.
LiDAR manufacturers have attempted to reduce this in-
fluence with multi-return and waveform LiDAR, which
are capable of either identifying multiple echoes per
laser pulse, or recording the entire waveform that may
be post-processed to the same effect. Weak ground sig-
nals due to attenuation from vegetation stand a better
chance of being detected with technological advances in
LiDAR receivers.
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A strong determinant of DEM quality is the percent-
age of ground returns (GRper), which is determined from
the following equation,

GRper ¼ 100
λGR
λp

: ð1Þ

where λGR and λp are, respectively, the densities of
ground returns and incident pulses. For the same inci-
dent pulse density as GRper increases features are in-
creasingly well defined, reducing the magnitude of
errors. If the minimum ground return density required
for an accurate DEM (λGRmin) is known, the required λp
to achieve this λGRmin can be determined from an esti-
mate of GRper using the following equation,

λp ¼ λGRmin
100
GRper

: ð2Þ

Many end users of DEMs are unaware of the issues
surrounding the quality of the underlying height data
and the influence of errors on derived calculations such
as slope, aspect (Smith et al. 2005) or canopy height
models (Clark et al. 2004). As described in Yu et al.
(2005) the quality of LiDAR-derived DEMs is influenced
by a number of factors, that can be grouped into the fol-
lowing four categories: errors caused by the laser system
(e.g. laser system and GPS), errors due to data character-
istics (e.g. first/last pulse, point density, flight height, scan
angle), errors created during data processing (e.g. filtering
process) and errors due to the characteristics of the target
(e.g. type of terrain, density of the canopy). The first three
categories can largely be controlled by the data provider
and much research has been devoted to optimising these
aspects (see Discussion in Yu et al., 2005).
The characteristics of the target, which cannot be con-

trolled by the data provider, have been found to have a
strong influence on DEM accuracy and GRper. Terrain
morphology, season of capture, stand and understory
density, stand age, canopy cover and forest species have all
been shown to be important determinants of the DEM ac-
curacy (Naesset 2002; Naesset and Okland 2002; Hodgson
et al. 2003; Reutebuch et al. 2003; Hyyppa et al. 2005).
GRper generally decreases with increases in stocking and
canopy cover and has been found to decline to values as
low as 1.1% in high density sugi (Cryptomeria japonica D.
Don) forests (Takahashi et al. 2005). Information on how
target characteristics influence GRper is of interest as once
this is known the number of pulses required to produce
an accurate DEM can be determined.
Although many of the target characteristics affecting

GRper and DEM accuracy have been identified little re-
search has developed models that can predict GRper as a
function of key factors. Development of accurate models
of GRper require extensive and uniform datasets covering
wide ranges in stand conditions so that functional forms
can be adequately characterised. For a meaningful study,
other important factors that influence DEM accuracy,
such as the laser system, flight specifications, data char-
acteristics and data processing steps should be
maintained constant to mitigate their influence. These
characteristics were part of a recently acquired LiDAR
dataset that covers the entire extent of New Zealand’s
predominantly Pinus radiata D. Don resource. Using
this dataset the objective of this research was to develop
a model of GRper that is sensitive to stand structure and
topography.

Methods
Dataset used
The dataset used was from a national inventory of planted
forests undertaken to measure and monitor temporal
change in national carbon stocks. This inventory was
undertaken to enable New Zealand to meet its obligations
under the Kyoto Protocol and the United Nations Frame-
work Convention on Climate Change (Beets et al. 2010).
The vast majority of plots (361 plots, 92%) were

established within Pinus radiata stands with a lesser
number in stands of Pseudotsuga menziesii (20 plots,
5%). As plots in stands of other species comprised less
than 3% of the total, these were excluded from the ana-
lysis as replication was inadequate to test for a species
effect in these plots. After these exclusions, a total of
381 plots were available for the modelling. The distribu-
tion of these plots is shown in Figure 1.
In stands established after 1990 circular plots with an

area of 0.06 ha were installed between June and Septem-
ber 2008 using a regular systematic 4 km grid. In stands
established prior to 1990, plots of 0.06 ha were installed
during 2010 on a complete 8 km grid. Field plot centres
were located using a 12-channel differential GPS to
within ± 3 m.
The LiDAR survey was flown using a Cessna 207 aircraft

in February 2008 (for the post-1990 forests) and 2010 (for
the pre-1989 forests) using a small footprint (~0.20 m)
Optech ALTM 3100EA system integrated with a Rollei
AIC digital camera. Table 1 summarises the LiDAR set-
tings used to achieve first return densities of at least 3
returns m-2. The digital camera was used in tandem with
the LiDAR sensor. The resulting colour photography had
a ground resolution of 0.2 m and a forward overlap of 30
percent. The system also utilised an Applanix 510 Position
and Orientation System (POS) that uses the GPS and iner-
tial measurement unit (IMU) sensors, and a GPS-based
computer controlled navigation system.

LiDAR processing
LiDAR data was provided by the supplier classified as
ground and non-ground returns. The classification was



Species 
Pseudotsuga menziesii

      Pinus radiata

Kilometres

Figure 1 Distribution of LUCAS sample plots used throughout
New Zealand.
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undertaken using Terra-Scan software with the algo-
rithm described by Axelsson (2000). Manual identifica-
tion of breaklines by skilled operators was also included
to improve DEM quality. These classified ground returns
were used to construct a DEM by connecting them into
a Triangulated Irregular Network (TIN), and then linear
interpolation onto a regular grid. As this software com-
monly underestimates the proportion of ground returns
(as in general a false-negative will have a lesser effect on
Table 1 Summary of key LiDAR settings for the dataset
collected

Variable Value

Wavelength (nm) 1064

Scan angle (deg.) ± 6

Pulse frequency (kHz) 70

Scan frequency (Hz) 53

Footprint diameter (m) 0.27

Ground speed (km hr-1) 194

Flying height (m) 1200
DEM accuracy than a false-positive), ground returns
were deemed to be any return below - or less than 0.2 m
above - this surface.
All returns from each pulse can be identified by an in-

dividual time code attached to each record. This enables
us to note the exact number of pulses (as well as returns
and ground returns) incident over an area. Selection of
pulses and returns in a 0.06 ha plot with a differentially-
corrected GPS plot centre was performed using the math-
ematical scripting environment Matlab (Mathworks,
Natick, Massachusetts, U.S.A.). Metrics determined for
each plot were number of ground classified returns,
number of returns within 0.2 m of the ground surface,
number of pulses and number of returns. GRper was de-
fined as the ratio of number of returns classified as
ground (or within 0.2 m) to the total number of pulses,
over the plot area (0.06 ha).
Field measurements, aspect, slope
Stand age for each plot was recorded. Plot measure-
ments relevant to this study included crop and non-crop
stand density, with the latter categorised into a range of
diameter categories (see Table 2 for classes). Slope and
aspect were measured in the field using an inclinometer
and compass. Slope, which was measured in degrees, was
defined as the average of the maximum gradient at the
plot centre, and the gradient at ninety degrees to that.
Analysis
Models used to predict GRper were generated using SAS
(SAS-Institute-Inc. 2000) by the non-linear modelling
procedure, PROC NLIN. This procedure was used as
there was non-linearity in this model and PROC NLIN
is able to accommodate a range of linear and non-linear
functional forms. Variables were introduced sequentially
into each model starting with the variable that exhibited
the strongest correlation, until further additions were ei-
ther (i) not significant, (ii) not biologically reasonable or
(iii) did not markedly improve model precision.
Variable selection was undertaken manually, and plots

of residuals were examined prior to variable addition to
ensure that the variable was included in the model using
the least biased functional form.
Model precision was determined using the coefficient

of determination (R2) and the root mean square error
(RMSE). Model bias was determined through plotting
predicted GRper against measured GRper, and residual
values (measured GRper – predicted values) against pre-
dicted GRper and all independent variables in the model.
Model generality was assessed through plotting residual
values against a number of key variables not included in
the model.



Table 2 Mean range and summary statistics for variables used in analyses

Term Mean Range R P-value

Age (years) 13.7 0-38 −0.30 < 0.0001

Stand density –all (stems ha-1) 872 17-11,183 −0.37 < 0.0001

Crop stand density (stems ha-1) 434 0-2,283 −0.14 0.0048

Non-crop stand density (Snc) – all (stems ha-1) 438 0-10,833 −0.34 < 0.0001

Snc : Diameter (D) > 250 mm (stems ha-1) 7.1 0-483 −0.14 0.0058

Snc : D > 275 mm (stems ha-1) 5.2 0-433 −0.13 0.013

Snc : D > 300 mm (stems ha-1) 3.5 0-367 −0.12 0.025

Snc : D > 350 mm (stems ha-1) 1.9 0-267 −0.11 0.040

Snc : D > 500 mm (stems ha-1) 0.39 0-50 −0.11 0.036

Snc : D > 750 mm (stems ha-1) 0.09 0-17 −0.07 0.18

Snc : D > 1000 mm (stems ha-1) 0.04 0-17 −0.05 0.29

Aspect (º) 185 0-359 −0.01 0.80

Slope (º) 16.9 0.2-44.5 −0.23 < 0.0001

Incident pulse density (pulses m-2) 3.84 2.27-10.38 −0.05 0.32

Shown are summary statistics describing the strength and significance of the relationship with the percentage of ground returns. Shown are the correlation
coefficient (R) and P-value for simple linear correlations. The total number of plots used in analyses was 381.
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Results
Data range
Within the dataset GRper averaged 30.5% and ranged
widely from 0.73 to 92.2%. The greatest percentage of
GRper occurred between 20-30% and the distribution
was right skewed (Figure 2). Although GRper for Pinus
radiata slightly exceeded that of Pseudotsuga menziesii
(30.7 vs. 26.9%) these differences were not significant
(P = 0.40).
Plots were located within stands aged between 0 and

38 years. They covered virtually all aspects (0–359°) and
were located on sites with slopes ranging from flat to
very steep (max slope of 45°). Crop stocking ranged from
0 – 2,283 stems ha-1 while non-crop stocking ranged
from 0 – 10,833 stems ha-1 (Table 2).
Figure 2 Frequency distribution of the percentage of
ground returns.
Correlations between GRper and independent variables
The percentage of ground returns was most strongly
related to total stand density (Figure 3), non-crop stand
density (Snc), crop-density (Sc), slope and stand age
(Figure 3, Table 2). Using a linear model all variables
showed significant negative relationships with GRper as
indicated by the negative correlation coefficients
(Table 2). For Snc the strength of the relationship di-
minished as smaller diameter plants were excluded
from the analysis (Table 2). Neither aspect nor the inci-
dent pulse density were significantly related to GRper

using simple linear equations (Table 2) or more com-
plex forms with curvilinearity (data not shown).

Regression model to predict GRper
The final regression model used to predict GRper in-
cluded non-crop stand density (Snc), age, crop stand
density (Sc) and slope. The final model formulation was
described by,

GRper ¼ a exp �b Sncð Þ þ c exp �d ageð Þ
þ e exp �f Scð Þ þ g slope ð3Þ

using parameter values given in Table 3. All variables
within the model were highly significant (Table 3) and
the final model accounted for 48% of the variance in the
dataset with root mean square error (RMSE) of 13.9%.
Although total stand density was more strongly related
to GRper than either of the component stockings (Snc, Sc)
the component stockings were used in the final model
as the combination of Snc and Sc resulted in a more pre-
cise model than use of only total stand density. Predicted
values of GRper using the final model exhibited little



Figure 4 Relationship between predicted and actual
percentage ground returns.

Figure 3 Relationship between percentage of ground returns
and (a) stand density of crop and non-crop elements and
(b) stand age.
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apparent bias against actual values (Figure 4). Residual
values for the model exhibited little apparent bias against
any of the variables included in the model or aspect
(data not shown). Examination of residual values showed
species had little effect on the relationship and inclusion
of a term for species was not significant (at P = 0.05).
Partial response functions, generated by holding all

model terms at average values, apart from the variable
shown, are illustrated in Figure 5. These functions show
that GRper declined exponentially with stand age, and
Table 3 Summary of statistics for the final regression model

Parameter Value Variable

a 27.899 Stand density of non-crop stem

b 0.00110

c 47.1411 Age

d 0.1744

e 28.3712 Stand density of crop stems

f 0.00348

g −0.5863 Stand slope

Parameter values are shown for the model described in Equation 3. Also shown are
each variable. For the significance category the F values and P categories from an F
at P < 0.001.
both crop and non-crop stand density. There was a lin-
ear decline in GRper with slope. GRper was most sensitive
to stand age, as demonstrated by the considerable reduc-
tion in GRper over the first 20 years, from ca. 61% to
15%. However, at stand ages above 20 years little decline
from 15% was observed (Figure 5).
As a DEM is usually generated at harvest, Table 4

shows the percentage of ground returns around varying
slopes, and crop stand densities, at an average harvest
age of 28 years for P. radiata. Note that little change
would be expected if harvest age was earlier than this as
GRper was found to be generally insensitive to stand age
above an age of 20 years (Figure 5). As GRper was rela-
tively invariant to crop stand density above a stand dens-
ity of 1,000 stems ha-1, (Figure 5) no values are shown at
stand densities above these. Values are shown for a mean
non-crop stand density of 438 stems ha-1 and the most
common non-crop stand density of 0 stems ha-1 as this
latter stand density represented 48% of observations in
the dataset.
Results show a wide range in GRper from 40% under

the lowest slope, crop and non-crop stand densities to
Units R2 Significance

s stems ha-1 0.17 (0.17) 602.77***

years 0.16 (0.33) 47.1***

stems ha-1 0.10 (0.43) 33.0***

degrees 0.05 (0.48) 39.4***

the partial and cumulative (in brackets) coefficient of determination (R2) for
-test, are shown for each variable, with asterisks *** representing significance



Figure 5 Partial response functions showing variation in percentage ground returns as a function of (a) stand age, (b) non-crop stand
density, (c) crop stand density and (d) slope.
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0.7% for high values of crop stand densities and slope
under mean values of non-crop stand densities. It should
be noted that the predicted values were constrained to
the lowest value in the dataset of 0.7%.
Assuming a minimum of 0.2 ground returns m-2 is re-

quired for developing an engineering grade DEM, the
predicted GRper in Table 4 can be used to formulate
broad guidelines for development of an accurate DEM.
Table 4 Percentage of ground returns as a function of slope,
(438 stems ha-1) and the most common non-crop stand densi

Non-crop stand density of 0 stems ha-1

Slope Crop stand density

250 500 750 100

0 40 33 30 2

5 37 30 27 2

10 34 27 24 2

15 31 24 22 2

20 28 22 19 1

25 25 19 16 1

30 23 16 13 1

35 20 13 10

40 17 10 7

45 14 7 4

All values are shown for the mean New Zealand rotation length of 28 years. Note th
value recorded in the LUCAS dataset.
Table 5 shows recommended minimum pulse densities
across a range of stand conditions.
Table 5 shows a wide range in minimum pulse dens-

ities. For stands with no non-crop element values are
less than 7 pulses m-2 under all combinations of slope
and crop stand densities. For stands with an average
non-crop stand densities minimum pulse densities are
relatively low for low crop stand densities and slopes,
crop stand density for the mean non-crop stand density
ty (0 stems ha-1)

Non-crop stand density 438 stems ha-1

Crop stand density

0 250 500 750 1000

9 29 23 20 18

6 27 20 17 16

3 24 17 14 13

0 21 14 11 10

7 18 11 8 7

4 15 8 5 4

2 12 5 2 1

9 9 2 0.7 0.7

6 6 0.7 0.7 0.7

3 3 0.7 0.7 0.7

at a minimum value of 0.7% was assumed for GRper as this was the lowest



Table 5 Minimum pulse density (pulses m-2) required to produce at least 0.2 ground returns m-2 as a function of slope,
crop stand density for the mean non-crop stand density (438 stems ha-1) and the most common non-crop stand
density (0 stems ha-1)

Non-crop stand density of 0 stems ha-1 Non-crop stocking 438 stems ha-1

Slope Crop stand density (stems ha-1) Crop stand density (stems ha-1)

250 500 750 1000 250 500 750 1000

0 0.5 0.6 0.7 0.7 0.7 0.9 1.0 1.1

5 0.5 0.7 0.7 0.8 0.7 1.0 1.2 1.3

10 0.6 0.7 0.8 0.9 0.8 1.2 1.4 1.5

15 0.6 0.8 0.9 1.0 1.0 1.4 1.8 2.0

20 0.7 0.9 1.1 1.2 1.1 1.8 2.5 2.9

25 0.8 1.1 1.3 1.4 1.3 2.5 4.0 5.0

30 0.9 1.3 1.5 1.7 1.7 4.0 10 20

35 1.0 1.5 2.0 2.2 2.2 10 27 27

40 1.2 2.0 2.9 3.3 3.3 27 27 27

45 1.4 2.9 5.0 6.7 6.7 27 27 27

All values are shown for the mean New Zealand rotation length of 28 years.
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but do increase markedly to 27 pulses m-2 for high
slopes and high crop stand densities.

Discussion
The dataset used in this study was unique as LiDAR
measurements were taken under uniform flying condi-
tions and predominantly from a single tree species that
occurred across a very diverse set of stand and site con-
ditions. The relative control of LiDAR attributes and tree
species within this dataset allowed the impact of stand
structure and site conditions on GRper to be accurately
assessed. Response functions between GRper and inde-
pendent variables were well defined as variation in stand
and site conditions were extremely wide. Findings show
that a relatively large proportion of the variation in
GRper could be attributed to stand conditions (age, stand
and understory structure) with the site conditions (stand
slope) accounting for somewhat less of the variance.
The factors included in the final model have been pre-

viously found to have a significant influence on GRper

and DEM quality. Although there is often collinearity
between variables, in general DEM error has been shown
to increase with increasing canopy stem density, age
(Reutebuch et al. 2003; Naesset 2002; Naesset and
Okland 2002), and levels of undergrowth (Hyyppa et al.
2005). A decline in DEM quality with increasing slope
has also been demonstrated previously (Hyyppa et al.
2005). Our research extends these previous studies by
partitioning the importance of each factor on GRper and
describing the functional form between each of the inde-
pendent variables and GRper.
The stand level variables included in the final model

are likely to be surrogates for the projected leaf area
index (that also includes other above ground material
such as stems, branches) which has a direct influence on
radiation transmitted to the ground, (Qi) and therefore
GRper. In a stand with a continuous canopy Qi is deter-
mined by Beers’ Law using Qi = 1- (e-k L) Qo) where Qo

is available incident radiation, k is the light extinction
coefficient (assumed to be 0.5 for a spherical leaf angle
distribution), and L is the leaf area index of the tree and
understory canopy. As Qo is determined by the LiDAR
specifications and is relatively constant then variation in
the percentage of light reaching the ground (Qi/Qo) is
largely reliant on L, with values declining as L increases.
Previous research has shown strong increases in L with
increasing values of stand age that approach a plateau
following canopy closure (Madgwick et al. 1977; Pinjuv
2006). The increase in L with understory density has also
been documented (Watt et al. 2009). Further research
should investigate if a more process-based model of
GRper can be developed using variables such as L. Al-
though the model developed here was relatively simple
and empirical in nature the variables used are easy to ob-
tain. As a result the final model is likely to be widely used.
No significant differences in GRper were found be-

tween the two species included in the final model. In
addition the final model demonstrated little bias with re-
spect to either species, and inclusion of a species term
did not significantly improve the final model. The model
provided insight into the lack of species influence on
GRper. The effect of the substantially higher mean stand
density of Pseudotsuga menziesii over Pinus radiata (875
vs. 410 stems ha-1) on GRper was almost completely off-
set by a significantly lower non-crop density in the
former species (204 vs. 433 stems ha-1).
Previous research has often described variation in

GRper between different species (Naesset 1997, 2002;
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Takahashi et al. 2005). Our results suggest that these dif-
ferences are likely to be attributable to variation in one
or more of the factors included in the final regression
model (stand density, stand age, understory density,
stand slope). For comparisons where one or more of the
species is deciduous it is also likely that timing of image
capture influences variation in GRper between species
(Hyyppa et al. 2005). Further research, using the model-
ling approach applied here, should investigate whether
there is a species effect after accounting for these fac-
tors. A lack of a residual species effect on GRper would
allow generalisation of models describing LiDAR pene-
tration through the canopy.
All data were collected with an Optech 3100EA unit,

capable of collecting up to four returns per pulse. Flight
specifications were a flying altitude of around 1200 m,
ground speed of around 194 km hr-1 and pulse repeti-
tion rate of 70 kHz. TerraScan software was used,
implementing the algorithm in Axelsson (2000). Manual
identification of breaklines by skilled operators was also
included to improve DEM quality. With this level of spe-
cialisation the exact result cannot be expected to apply
to other LiDAR units, flying specifications and post-
processing methods, although the relative influence of the
target attributes on GRper (stand density, non-crop stand
density, species, age etc.) are still of significant value.

Conclusions
In summary, stand and site factors were found to have a
significant influence on GRper. When combined into a
multiple regression model these factors accounted for 48%
of the variance in a national dataset that covered a wide
range of stand conditions and broad topographic gradi-
ents. As the necessary pulse density for an accurate DEM
can be determined from GRper the developed model is
likely to have useful application within forest manage-
ment. Further research should investigate whether such a
modelling approach can be generalised across a broader
range of species, environments, LiDAR collection systems
and post-processing tools than was included in this study.
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